Binomial Queues

CSE 326 Data Structures Lecture 12

Reading

- Reading
 - Section 6.8,

Binomial Queues - Lecture 12

Merging heaps

- · Binary Heap is a special purpose hot rod
 - > FindMin, DeleteMin and Insert only
 - › does not support fast merges of two heaps
- · For some applications, the items arrive in prioritized clumps, rather than individually
- Is there somewhere in the heap design that we can give up a little performance so that we can gain faster merge capability?

Binomial Queues

- Binomial Queues are designed to be merged quickly with one another
- Using pointer-based design we can merge large numbers of nodes at once by simply pruning and grafting tree structures
- · More overhead than Binary Heap, but the flexibility is needed for improved merging speed

Binomial Queues - Lecture 12

Worst Case Run Times

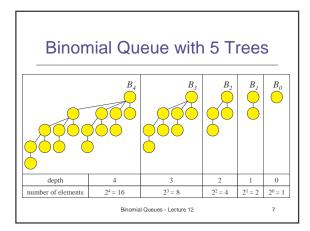
Binomial Queue Binary Heap Insert Θ(log N) $\Theta(\log N)$ FindMin O(log N) Θ(1) Θ(log N) DeleteMin $\Theta(\log N)$ $\Theta(N)$ O(log N) Merge

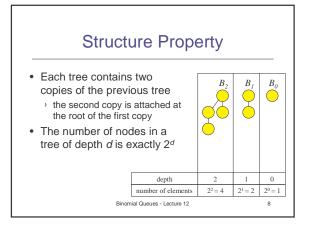
Binomial Queues - Lecture 12

Binomial Queues

- Binomial queues give up Θ(1) FindMin performance in order to provide O(log N) merge performance
- · A binomial queue is a collection (or forest) of heap-ordered trees
 - > Not just one tree, but a collection of trees
 - > each tree has a defined structure and capacity
 - > each tree has the familiar heap-order property

Binomial Queues - Lecture 12





Powers of 2

- Any number N can be represented in base 2
 - A base 2 value identifies the powers of 2 that are to be included

8	4,	2	ਜੰ			
Ш			- 11			
23	52	72	°	Hex ₁₆	Decimal ₁₀	
		1	1	3	3	
	1	0	0	4	4	
	1	0	1	5	5	

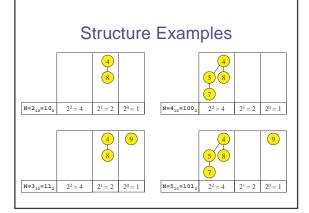
Binomial Queues - Lecture 12

Numbers of nodes

- Any number of entries in the binomial queue can be stored in a forest of binomial trees
- Each tree holds the number of nodes appropriate to its depth, ie 2^d nodes
- So the <u>structure</u> of a forest of binomial trees can be characterized with a single binary number
 - $100_2 \rightarrow 1.2^2 + 0.2^1 + 0.2^0 = 4 \text{ nodes}$

Binomial Queues - Lecture 12

10

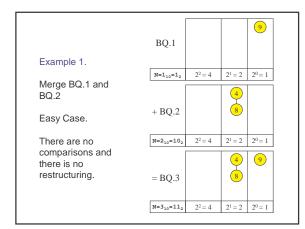


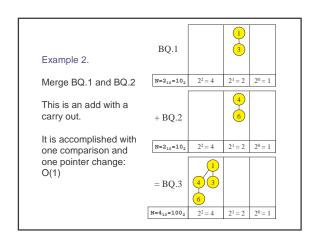
What is a merge?

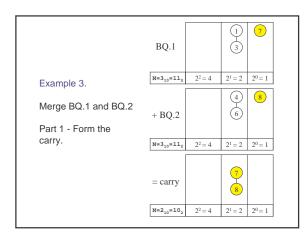
- There is a direct correlation between
 - > the number of nodes in the tree
 - > the representation of that number in base 2
 -) and the actual structure of the tree
- When we merge two queues, the number of nodes in the new queue is the *sum* of $N_1 + N_2$
- We can use that fact to help see how fast merges can be accomplished

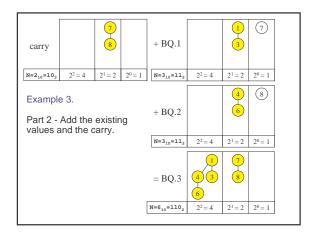
Binomial Queues - Lecture 12

12









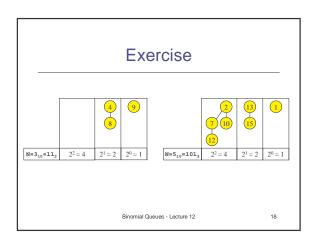
Merge Algorithm

- · Just like binary addition algorithm
- Assume trees X₀,...,X_n and Y₀,...,Y_n are binomial queues
 - \rightarrow X_i and Y_i are of type B_i or null

 $\begin{array}{l} \textbf{C}_0 := null; \; //initial \; carry \; is \; null // \\ \text{for } i = 0 \; \text{to } n \; \text{do} \\ \text{combine } \textbf{X}_i, \textbf{Y}_i, \; \text{and } \textbf{C}_i \; \text{to form } \textbf{Z}_i \; \text{and new } \textbf{C}_{i+1} \\ \textbf{Z}_{n+1} := \textbf{C}_{n+1} \end{array}$

Binomial Queues - Lecture 12

17



O(log N) time to Merge

- For N keys there are at most \[log_2 N \] trees in a binomial forest.
- Each merge operation only looks at the root of each tree.
- Total time to merge is O(log N).

Binomial Queues - Lecture 12

19

Insert

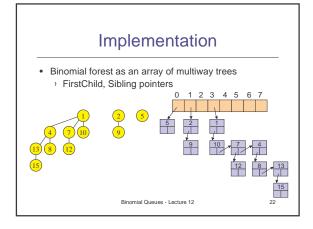
- Create a single node queue B₀ with the new item and merge with existing queue
- O(log N) time

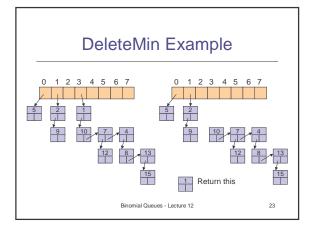
Binomial Queues - Lecture 12

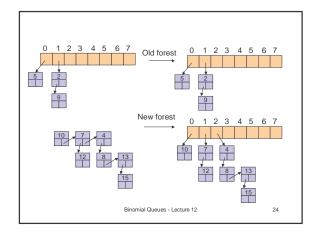
DeleteMin

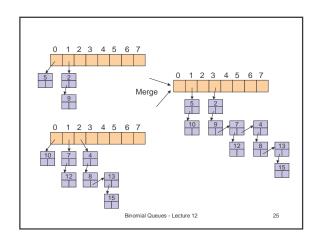
- 1. Assume we have a binomial forest $X_0,...,X_m$
- 2. Find tree X_k with the smallest root
- 3. Remove X_k from the queue
- Remove root of X_k (return this value)
 This yields a binomial forest Y₀, Y₁, ..., Y_{k-1}.
- 5. Merge this new queue with remainder of the original (from step 3)
- Total time = O(log N)

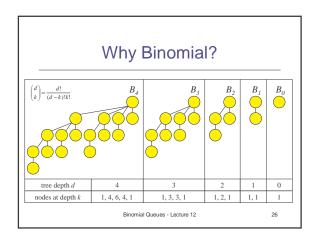
Binomial Queues - Lecture 12











Other Priority Queues

- Leftist Heaps
 - O(log N) time for insert, deletemin, merge
- Skew Heaps
 - O(log N) amortized time for insert, deletemin, merge
- Calendar Queues
 - O(1) average time for insert and deletemin
 - > Assuming insertions are "random"

Binomial Queues - Lecture 12

