
1

Introduction

CSE 326
Data Structures

Lecture 1

Introduction - Lecture 1 2

Administrative

• Instructor
› Richard Ladner
› ladner@cs.washington.edu

• TA
› Ian Simon
› Iansimon@cs.washington.edu

• Class info is on the web site
› http://www.cs.washington.edu/326
› also known as

• http://www.cs.washington.edu/education/courses/326/05au

• Email Lists
› cse326 (must signup to receive announcements)
› Cse326-open (optional for class discussion)

Introduction - Lecture 1 3

Office Hours

• Richard Ladner – CSE 632
› Mondays 1 to 2:30 or by appointment

• Ian Simon - CSE 216
› Tuesdays 12 to 2

Introduction - Lecture 1 4

Class Overview

• Introduction to many of the basic data structures
used in computer software
› Understand the data structures
› Analyze the algorithms that use them
› Know when to apply them

• Practice design and analysis of data structures.
• Practice using these data structures by writing

programs.
• Data structures are the plumbing and wiring of

programs.

Introduction - Lecture 1 5

Goal (1)

• You will understand
› what the tools are for storing and

processing common data types
› which tools are appropriate for which need

• So that you will be able to
› make good design choices as a developer,

project manager, or system customer

Introduction - Lecture 1 6

Goal (2)

• Be able to:
› Reason formally about algorithms
› Communicate ideas about programs

clearly and precisely

• Homeworks are mostly written
› Need more than “correct” answer—need to

effectively communicate the ideas

2

Introduction - Lecture 1 7

Weekly Assignments

• Weekly homeworks
› Involve algorithms design and analysis
› No coding

› Pseudocoding is preferred
› Due on Wednesdays

Introduction - Lecture 1 8

Pseudocode

• The algorithms you design in homework
will be read by a person, not a computer

• The No Code Rule:
› Do not turn in Java or C code when asked

for pseudocode
› Explain algorithm precisely, but without all

the details needed for computer code

Introduction - Lecture 1 9

Pseudocode example (good)

• r ever sePr i nt (s t r i ng s)

Cr eat e an empt y s t ack A

For each char act er c i n s

Push c ont o A

Whi l e A i s not empt y

Pop c f r om A

Pr i nt c

Introduction - Lecture 1 10

Pseudocode example (bad)

• voi d r ever sePr i nt (St r i ng s) {

St ack A = new St ack() ;

f or (i nt i = 0; i < s . l engt h() ; i ++) {

A. push(s. get (i)) ;

}

Whi l e (! A. i sEmpt y()) {

Pr i nt (A. pop()) ;

}

Introduction - Lecture 1 11

Projects

• First project will be done in C in Linux
› Will use profiler and cache simulator CacheGrind

› TA will provide preparation in section

• Other projects can be done in C++ or Java.

• Project involve
› Writing code
› Experimenting
› Writing

Introduction - Lecture 1 12

Assignments, Projects, Exams

• Assignments 25%
› Due on Wednesdays, no late assignments

• Projects 25%
› 3 programming projects

• Midterm 20%
› Friday, November 4, 2005

• Final 30%
› 2:30-4:20 p.m. Wednesday, Dec. 14, 2005

3

Introduction - Lecture 1 13

Course Topics

• Introduction to Algorithm Analysis

• Sorting
• Memory Hierarchy

• Search Algorithms and Trees

• Hashing and Heaps
• Disjoint Sets

• Graph Algorithms
• Computational Geometry

Introduction - Lecture 1 14

Reading

• Reading in Data Structures and Algorithm
Analysis in C, by Weiss
› Chapter 1 – Mathematical preliminaries

› Chapter 2 – Algorithm Analysis

› Chapter 7 - Sorting

• Insertion Sort

• Quicksort

• Mergesort

Introduction - Lecture 1 15

Data Structures: What?

• Need to organize program data according to
problem being solved

• Abstract Data Type (ADT) - A data object and a
set of operations for manipulating it
› List ADT with operations insert and delete
› Stack ADT with operations push and pop

• Note similarity to Java classes
› private data structure and public methods

Introduction - Lecture 1 16

Data Structures: Why?

• Program design depends crucially on how
data is structured for use by the program
› Implementation of some operations may become

easier or harder
› Speed of program may dramatically decrease or

increase
› Memory used may increase or decrease
› Debugging may be become easier or harder

Introduction - Lecture 1 17

Terminology
• Abstract Data Type (ADT)

› Mathematical description of an object with set of
operations on the object. Useful building block.

• Algorithm
› A high level, language independent, description of

a step-by-step process

• Data structure
› A specific family of algorithms for implementing an

abstract data type.

• Implementation of data structure
› A specific implementation in a specific language

Introduction - Lecture 1 18

Algorithm Analysis: Why?

• Correctness:
› Does the algorithm do what is intended.
› How well does the algorithm complete its goal

• Performance:
› What is the running time of the algorithm.
› How much storage does it consume.

• Different algorithms may correctly solve a
given task
› Which should I use?

4

Introduction - Lecture 1 19

Iterative Algorithm for Sum

• Find the sum of the first n integers
stored in an array v.

sum(i nt eger ar r ay v, i nt eger n) r et ur ns i nt eger

l et sum = 0

f or i = 1. . . n

sum : = sum + v [i]

r et ur n sum

Note the use of pseudocode

Introduction - Lecture 1 20

Programming via Recursion

• Write a recursive function to find the
sum of the first n integers stored in
array v.

sum(i nt eger ar r ay v , i nt eger n) r et ur ns i nt eger

i f n = 0 t hen

sum : = 0

el se

sum : = v[n] + sum(v, n- 1)

/ / sum : = n- t h number + sum of f i r s t n- 1 number s

r et ur n sum

Introduction - Lecture 1 21

Pseudocode

• In the lectures I will be presenting algorithms
in pseudocode.
› This is very common in the computer science

literature
› Pseudocode is usually easily translated to real

code.
› This is what I’m used to.

• Pseudocode should also be used for
homework

Introduction - Lecture 1 22

Proof by Induction

• Basis Step: The algorithm is correct for
a base case or two by inspection.

• Inductive Hypothesis: Assume that
the algorithm works correctly for the first
n-1 cases.

• Inductive Step: Given the hypothesis
above, show that the n-th case will be
calculated correctly.

Introduction - Lecture 1 23

Program Correctness by
Induction

• Basis Step: sum(v,0) = 0. ü
• Inductive Hypothesis:

› Assume sum(v,n-1) correctly returns sum
of first n-1 elements of v, i.e.
v[1]+v[2]+…+v[n-1]

• Inductive Step:
› sum(v,n) = v[n]+sum(v,n-1) (by program)

= v[n]+(v[1]+…+v[n-1]) (by inductive hyp.)
= v[1]+…+v[n-1]+v[n] (by algebra) ü

Introduction - Lecture 1 24

Algorithms vs Programs

• Proving correctness of an algorithm is very
important
› a well designed algorithm is guaranteed to work

correctly and its performance can be estimated

• Proving correctness of a program (an
implementation) is fraught with weird bugs
› Abstract Data Types are a way to bridge the gap

between mathematical algorithms and programs

5

Introduction - Lecture 1 25

Defining Efficiency

• Asymptotic Complexity - how running
time scales as function of size of input
› Order of magnitude notation

› O(n2) is better than O(n3) in the long run

• Why is this a reasonable definition?
› Definition is independent of any possible

advances in computer technology

Introduction - Lecture 1 26

The Apocalyptic Laptop

Seth Lloyd, SCIENCE, 31 Aug 2000

���������
∝ ��� �
	���
���� ������� ������� �

� ��� � �!�" � ��#$#%��� ��� ����&�' &��(��)�*�� � 	 �+ � & � � ��� � � � *�& � � ����,�-'.�/� � *
� � � � ������� � π 02143 !65 �-� ��	7��

8
0 � �69 #�& ����:�;��.� � ��� ��& � �"=<?>6@BA�C�DFEG������	�&��7��� ��� ����	 � � � � � �

Introduction - Lecture 1 27

1

100000

1E+10

1E+15

1E+20

1E+25

1E+30

1E+35

1E+40

1E+45

1E+50

1E+55

1E+60

1 10 100 1000

2^N

1.2^N

N^5

N^3

5N

Asymptotic Scaling

Apocalyptic laptop, 1 year

H�IKJMLONQPSRMTVU�NXWVU�YZP[W

H�IKJO\^]_Ya`

Apocalyptic laptop, 1 second

