CSE 326 – Data Structures

Winter 2004.

Mid-term Exam. 2/6/2004

	Student name
	Student number

	
	

	Question
	

	1
	 /30

	2
	 /18

	3
	 /20

	4
	 /32

	Total
	 /100

Question 1 (30 points)

Circle the correct answer. No need to justify your choice (5 points each).

1. A binary search tree includes 6 elements whose keys are 1,2,3,4,5,6.

The output of preorder traversal on the tree is 4,2,1,3,5,6

a. The tree is not an AVL tree.
b. The tree is an AVL tree.
c. Based on the given information, it is not possible to determine if the tree is an AVL tree or not.

2. It is known that ‘x’ is the maximal value in a splay tree. As a result of find(x):

a. No zig-zag rotations will take place.

b. No zig-zig rotations will take place.

c. It might be that both zig-zig and zig-zag rotations will take place.

3. A new element is inserted into a splay tree. Before the rotations, the element is added such that its depth is 2y.
a. Exactly one zig, zag, zig-zig or zig-zag rotation will take place.

b. The number of rotations depends on the structure of the tree, and is not known in advance.

c. Exactly y zig-zig or zig-zag rotations will take place.

4. Each of the functions f() and g() is getting an integral parameter n. It is known that g(n) has time complexity ((n). The function f(n) includes n/2 calls to g(n) (and possibly other operations).

a. The function f() has time complexity ((n2).

b. The function f() has time complexity ((n2).

c. The function f() has time complexity O(n2).

5. A binomial queue consisting of 19 elements is merged with a binomial queue consisting of 17 elements. In the resulting binomial queue
a. There are two trees each of size 16 and one tree of size 4.

b. There is one tree of size 32 and one tree of size 4.

c. (a) or (b) depending on the values of the keys in the binomial queues.

6. A preorder traversal is performed on a complete binary tree. The traversal visits the nodes in an increasing key order – starting from the one with the minimal value and ending with the one with the maximal value.
a. The tree represents a minimum binary heap.

b. The tree might represent a minimum binary heap.

c. The tree does not represent a minimum binary heap.

Question 2 (18 points)

1. A B-tree of order 6 has depth 10. Let n denote the number of elements stored in the tree leaves. Fill in the blanks.

· The minimal possible value for n is ________ 2 *310______

· The maximal possible value for n is _______ 611______

2. A binary heap is implemented using a complete binary tree (like in the lectures). Let n denote the number of elements in the binary heap. Let h(v) denote the height of node v, let d(v) denote the depth of node v. Fill in the blanks with a function of n

· The total sum of nodes depths,
[image: image1.wmf]å

=

n

i

i

v

d

1

)

(

, is ((___n log n____) .
· The total sum of nodes heights,
[image: image2.wmf]å

=

n

i

i

v

h

1

)

(

, is ((____ n ______).

Question 3 (20 points)

 A stack is implemented using a linked list with a header. Each node is defined by

struct stacknode {

key int;

next struct stacknode pointer;

};
Complete the code of the function PriorityPush(A, x) that gets as parameters a reference to a stack header ‘A’ and a new key ‘x’, and pushes ‘x’ onto the stack. Unlike a regular push, in PriorityPush ‘x’ in not necessarily placed at the top position. The location of ‘x’ in ‘A’ is such that all the keys above ‘x’ are larger than ‘x’ and the key below ‘x’ has value at most ‘x’. If ‘x’ is the minimum value, it is placed at the bottom of the stack.

Example: PriorityPush of the key 8 is performed on the left stack. The result is the right stack.

[image: image3]

Question 4 (32 points)

Two binary trees, T1 and T2, are called isomorphic if T2 can be formed from T1 by a sequence of operations, in each of which some vertex, v, is selected and the children of v are swapped (in other words, the pointer to the left subtree of v is swapped with the pointer to the right subtree of v).

Examples of isomorphic pairs: Example of a non-isomorphic pair:

Given the following node structure of a binary tree (note the two fields with the number of nodes in the subtrees).

struct node {

key int;

left struct node pointer;

right struct node pointer;

lsize int;

//number of nodes in left subtree

rsize int;

//number of nodes in right subtree

};

a. Complete the code of the recursive function AreIso(), that gets as input two references to two tree roots, and returns as output ‘1’ if the two trees are isomorphic and ‘0’ otherwise. It is known that each of the trees fulfills the following property: In any internal node v, the fields v.lsize and v.rsize have the correct values, and v.lsize (v.rsize.

Remarks: 1. You can assume that neither of the trees are empty.

2. If v.left or v.right are NULL then the corresponding values v.lsize or v.rsize are 0.

AreIso (r1 struct node pointer, r2 struct node pointer,): int

{

if (r1=NULL) // base

 return 1 ;

if (r1.lsize = r2.lsize && r1.rsize = r2.rsize) //no swap

 return (AreIso (r1.left, r2.left) && AreIso(r1.right, r2.right)) ;

if (r1.lsize = r2.rsize && r1.rsize = r2.lsize) // swap

 return (AreIso (r1.left, r2.right) && AreIso(r1.right, r2.left)) ;

return 0;

}

b. The worst-case time complexity of AreIso() is ((____n1+n2____). Fill in a function of the number of nodes, n1 and n2, in the trees.

Explain your answer:

If the trees are isomorphic, both needs to be traversed completely. For each of the trees the function spends ((1) time before calling the left and the right subtrees. Therefore all together it spends ((n1+n2). Note that if the trees are not isomorphic then the time is ((min(n1+n2)), which is also a correct answer. Anyway, in the worst case, n1=n2 so ((min(n1+n2)) = ((2min(n1+n2)= ((n1+n2).

It is also true that if n1≠n2, the function will return immediately, without any recursion. But that doesn’t have anything to do with the worst-case complexity in terms of n1 and n2, so should be ignored.
c. The worst-case space complexity of AreIso() is ((___ n1+n2 ______). Fill in a function of the number of nodes, n1 and n2, in the trees.

Explain your answer:

The space complexity is determined by the depth of the recursion, which is ((depth of T1 + depth of T2). Since we only know that the trees are binary trees (but not necessarily balanced), in the worst case it is ((n1+n2). [again, ((min(n1+n2)) is another correct answer]

8

54

-4

3

19

12

54

-4

3

19

12

PriorityPush(A struct stacknode pointer, x int)

{

 //recursive version

 tmp struct stacknode pointer;

if (A->next = NULL || A->next->key <=x){

	tmp = new struct stacknode;

tmp.value =x;

tmp.next = A.next;

 	A->next = tmp;

return;

}

PriorityPush(A->next, x);

}

 PriorityPush(A struct stacknode pointer, x int)

 {

 //non-recursive version,

// A is the header of the stack,

// so there is no key in the header

 tmp struct stacknode pointer;

 while(A->next != NULL && A->next.key > x)

		A = A->next;

tmp = new struct stacknode;

tmp.value =x;

tmp.next = A.next;

 A->next = tmp;

}

_1137262446.unknown

_1137262319.unknown

