Disjoint Union / Find

CSE 326
Data Structures
Unit 13

Reading: Chapter 8

Equivalence Relations

o Arelation R is defined on set S if for
every pair of elements a, b(JS,aR b is
either true or false.

* An equivalence relation is a relation R
that satisfies the 3 properties:
> Reflexive: a R a for all alJS
> Symmetric: a R b iff b R a; for all a,bl]S
> Transitive: aR bandb R cimpliesaR ¢

Equivalence Classes

» Given an equivalence relation R, decide
whether a pair of elements a,blS is
such thata R b.

* The equivalence class of an element a
is the subset of S of all elements
related to a.

« Equivalence classes are disjoint sets

Dynamic Equivalence
Problem

« Starting with each element in a singleton set,
and an equivalence relation, build the
equivalence classes

» Requires two operations:

> Find the equivalence class (set) of a given
element

> Union of two sets
* Itis a dynamic (on-line) problem because the

sets change during the operations and Find
must be able to cope!

Disjoint Union - Find

* Maintain a set of disjoint sets.
> {3,5,7}, {4,2,8}, {9}, {1,6}

» Each set has a unique name, one of its
members
> {3,5,7}, {4,2,8}, {9}, {1,6}

Union

* Union(x,y) — take the union of two sets
named x and y
> {3,5,7}, {4,2,8}, {9}, {1,6}
> Union(5,1)
{3,5,7,1,6}, {4,2,8}, {9},

Find

* Find(x) — return the name of the set
containing X.
> {3,5,7,1,6}, {4,2,8}, {9},
> Find(1) =5
> Find(4) = 8

An Application

* Build a random maze by erasing edges.

An Application (ct’d)

An Application (ct’d)

e Pick Start and End

Start

End

* Repeatedly pick random edges to delete.

Start

End

10

Desired Properties

A Cycle (we don’t want that)

* None of the boundary is deleted

» Every cell is reachable from every other
cell.

» There are no cycles — no cell can reach
itself by a path unless it retraces some
part of the path.

11

Start

End

12

A Good Solution

Start

End

13

Good Solution : A Hidden
Tree

Start

End

14

Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4},... {36} } each cell is unto itself.

We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

Start

1

7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

End

15

Basic Algorithm

* S = set of sets of connected cells
* E =set of edges

While there is more than one setin S
pick a random edge (x,y)
u :=Find(x); v :=Find(y);
if u #vthen
Union(u,v) //knock down the wall between the cells (cells in
Remove (x,y) from E /lthe same set are connected)

* If u=v there is already a path between x and y
 All remaining members of E form the maze

16

Example Step

Example

. S S
Pick (8,14) Sl) 780131 {1,2,7,8,9,13,19} {1,2,7,8,9,13,19,14.20 26,27}
{1,2,7,8,9,13,19} {8} t—— Find8) =7 3
{3} {4} Find(14) =20 g
Stat 1 2 | 3|4 | 5|6 {4} 5} =
{5} — &}
{6} - {6}
7 8 9 [10|11]12 6} Union(7,20)
{10} o} {10}
13 (14 |15 16 | 17 | 18 1117 {11,17} (11,17}
(ig} (12} 12}
19 |20 |21 | 22 23| 24 {12} {14,20,26,27} {15,16,21}
{14,20,26,27} {15,16,21} =
25|26 27|28 |29 30 {15,16,21} T :
End - {22,23,24,29,39,32
31|32 33 34 35 36 , (22.23.24.20,30,32 At At
{22,23,24,29,30,32 33,34,35,36} = !
33,34,35,36} 17 - 18
Example Example at the End
Pick (19,20) s s
{1,2,7,8,9,13,19 {1,2,3,4,5,6,7,... 36}
14,20,26,27}
Stat 1 2 | 3|4 | 5|6 {3} Stat 1 2 | 3|4 5 6
{4} I — E
7 8 9 [10]|11]12 5} 7 8 9 10 11|12
{6}
13 | 14 | 15 16 | 17 | 18 (o} 13|14 |15 16 17 | 18
19|20 |21 |22 23|24 {11,17} 19|20 |21 22 23|24
{12}
25|26 27|28 |29 30 {15,16,21} 25 26 27 28|29 30
31|32 33 34 35 36 End 31|32 33 34 35 36 End

{22,23,24,29,39,32
33,34,35,36} 19

20

Up-Tree for DU/F

Initial state @ @ @ @ @ @ @

Intermediate (1) (3) (7)
state é@ /
Roots are the names of each set. @{

21

Find Operation

» Find(x) follow x to the root and return

. @é@{

Find(6) = 7

22

Union Operation

* Union(i,j) - assuming i and j roots, point i
to j.

Union(1,7)

23

Simple Implementation

» Array of indices (Upli] is parent of i)
Up [x] = 0 means
123 45 67 X is a root.

w [0]1]o]7[7]5]0]

@é@ ® é
.

24

Union Find
, , , » Design Find operator
Union(up[] : integer array, x,y : integer) : { , Recursive version
/I precondition: x and y are roots//
Up[x] 1=y > Iterative version
}
Find(up[] : integer array, x : integer) : integer {
/lprecondition: x is in the range 1 to size//
Constant Time! ;??
25 26
A Bad Case Weighted Union
®©@ @ @ @) | « Weighted Union (weight = number of nodes)
union(t.2) > Always point the smaller tree to the root of the
@ ® larger tree

Union(2,3)

)
@ .
/® Union(n-1,n)

@ Find(1) n steps!!

o .

W-Union(1,7)

28

Example Again

Analysis of Weighted Union

®@ @ ® - @
Union(1,2)
@ @ 'R @
@5 @ Union(2,3)
o
Union(n-1,n)

§ o0

Find(1) constanttime

29

« With weighted union an up-tree of height h
has weight at least 2.
e Proof by induction
> Basis: h = 0. The up-tree has one node, 2°=1
> Inductive step: Assume true for all h’ < h.

T W(T,) > W(T,) > 21

Minimum weight T Weigr{ted Indﬁction
up-tree of height h h-1 union hypothesis
formed by i

h-1 h-1 = 2h
weighted unions W(T) 2 2M+ 2 =2
30

Analysis of Weighted Union

Worst Case for Weighted
Union

Let T be an up-tree of weight n formed
by weighted union. Let h be its height.

n>2h

log, n>h

Find(x) in tree T takes O(log n) time.
Can we do better?

31

n/2 Weighted Unions

$8686868

n/4 Weighted Unions

s 5y o3 o3

32

Example of Worst Cast (cont’)

Elegant Array Implementation

Aftern-1=n/2 + n/4 + ...+ 1 Weighted Unions
OQ‘\\
2 A

If there are n = 2k nodes then the longest
path from leaf to root has length k.

33

. ® .0 . @

SaN
.

1 2 345 6
C th t
up |0111017171510) o storing the
weight | 2 1 complement of weight

in the space reserved
for the root

34

Welighted Union

Path Compression

W Union(i,j : index){
/11 and j are roots//
wi o= weight[i];
W o= weight[j];
if ww <w then

upli] = 7j;
weight[j] :=w + w;
el se

uplj] :=i;

weight[i] (= w +w;

35

* On a Find operation point all the nodes on the
search path directly to the root.

g)Cf;WWQ . 6 e
.

9 w &
10

36

Self-Adjustment Works

Dy v
I3 ADAA
’ k PC-Find(x) ‘\ ‘°\

A A\ g

7%

37

Path Compression Find

PC- Find(i : index) {
roi=i;
while up[r] # 0 do //find root//
r :=up[r];
if i #£r then //conpress path//
k :=up[i];
while k # r do
up[i] :=r;
i =k
k = up[K]
return(r)

}

38

Example

e

39

Disjoint Union / Find
with Weighted Union and PC

» Worst case time complexity for a W-
Union is O(1) and for a PC-Find is
O(log n).

* Time complexity for m = n operations on
n elements is O(m log* n) where log* n
Is a very slow growing function.
> log * n < 7 for all reasonable n. Essentially

constant time per operation!

40

Amortized Complexity

Find Solutions

» For disjoint union / find with weighted
union and path compression.

> average time per operation is essentially a
constant.

> worst case time for a PC-Find is O(log n).

» An individual operation can be costly,
but over time the average cost per
operation is not.

41

Recursive

Find(up[] : integer array, x : integer) : integer {
/lprecondition: x is in the range 1 to size//

if up[x] = 0 then return x

el se return Fi nd(up, up[x])

}

Iterative
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to sizel//
while up[x] # 0 do
X = up[x];
return x;

}

42

