Disjoint Union / Find

CSE 326
Data Structures
Unit 13

Reading: Chapter 8

Equivalence Classes

- Given an equivalence relation R, decide whether a pair of elements a,b∈S is such that a R b.
- The equivalence class of an element a is the subset of S of all elements related to a.
- Equivalence classes are disjoint sets

Equivalence Relations

- A relation R is defined on set S if for every pair of elements a, b∈ S, a R b is either true or false.
- An equivalence relation is a relation R that satisfies the 3 properties:

Reflexive: a R a for all a∈ S

Symmetric: a R b iff b R a; for all a,b∈ S

Transitive: a R b and b R c implies a R c

2

Dynamic Equivalence Problem

- Starting with each element in a singleton set, and an equivalence relation, build the equivalence classes
- Requires two operations:
 - > Find the equivalence class (set) of a given element
 - Union of two sets
- It is a dynamic (on-line) problem because the sets change during the operations and Find must be able to cope!

Disjoint Union - Find

- Maintain a set of disjoint sets.
 - → {3,5,7} , {4,2,8}, {9}, {1,6}
- Each set has a unique name, one of its members
 - $\rightarrow \{3,\underline{5},7\}, \{4,2,\underline{8}\}, \{\underline{9}\}, \{\underline{1},6\}$

Union

- Union(x,y) take the union of two sets named x and y
 - > {3,<u>5</u>,7}, {4,2,<u>8</u>}, {<u>9</u>}, {<u>1</u>,6}
 - Union(5,1){3,5,7,1,6}, {4,2,8}, {9},

5

6

Find

- Find(x) return the name of the set containing x.
 - > {3,<u>5</u>,7,1,6}, {4,2,<u>8</u>}, {<u>9</u>},
 - \rightarrow Find(1) = 5
 - $\Rightarrow Find(4) = 8$

An Application

• Build a random maze by erasing edges.

An Application (ct'd)

· Pick Start and End

An Application (ct'd)

• Repeatedly pick random edges to delete.

9

10

Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles no cell can reach itself by a path unless it retraces some part of the path.

A Cycle (we don't want that)

A Good Solution

Good Solution : A Hidden Tree

13

Number the Cells

We have disjoint sets $S = \{ \{1\}, \{2\}, \{3\}, \{4\}, \dots \{36\} \}$ each cell is unto itself. We have all possible edges $E = \{ (1,2), (1,7), (2,8), (2,3), \dots \}$ 60 edges total.

Start

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

End

Basic Algorithm

14

16

- S = set of sets of connected cells
- E = set of edges

```
While there is more than one set in S pick a random edge (x,y) u := Find(x); v := Find(y); if u \neq v then Union(u,v) //knock down the wall between the cells (cells in Remove (x,y) from E //the same set are connected)
```

- If u=v there is already a path between x and y
- All remaining members of E form the maze

Example Step

Example

Example

Example at the End

Up-Tree for DU/F

Initial state

Intermediate state

Roots are the names of each set.

Find Operation

 Find(x) follow x to the root and return the root

3

21

Union Operation

 Union(i,j) - assuming i and j roots, point i to j.

Simple Implementation

• Array of indices (Up[i] is parent of i)

Up [x] = 0 means x is a root.

23

24

Union

```
Union(up[] : integer array, x,y : integer) : {
//precondition: x and y are roots//
Up[x] := y
}
```

Constant Time!

Find

- Design Find operator
 - Recursive version
 - Iterative version

```
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
???
}
```

25

27

26

A Bad Case

Weighted Union

- Weighted Union (weight = number of nodes)
 - Always point the smaller tree to the root of the larger tree

Example Again

Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least 2^h.
- Proof by induction
 - \rightarrow Basis: h = 0. The up-tree has one node, $2^0 = 1$
 - › Inductive step: Assume true for all h' < h.

Minimum weight up-tree of height h formed by weighted unions

 $W(T_1) \ge W(T_2) \ge 2^{h-1}$ Weighted Induction hypothesis

 $W(T) \ge 2^{h-1} + 2^{h-1} = 2^h$

30

Analysis of Weighted Union

- Let T be an up-tree of weight n formed by weighted union. Let h be its height.
- $n \ge 2^h$
- $\log_2 n \ge h$
- Find(x) in tree T takes O(log n) time.
- Can we do better?

Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions

Example of Worst Cast (cont')

After n -1 = n/2 + n/4 + ... + 1 Weighted Unions

If there are $n = 2^k$ nodes then the longest path from leaf to root has length k.

Elegant Array Implementation

Weighted Union

W-Union(i,j : index){
//i and j are roots//
 wi := weight[i];
 wj := weight[j];
 if wi < wj then
 up[i] := j;
 weight[j] := wi + wj;
 else
 up[j] :=i;
 weight[i] := wi +wj;
}</pre>

Path Compression

 On a Find operation point all the nodes on the search path directly to the root.

34

Self-Adjustment Works

Path Compression Find

PC-Find(i : index) {
 r := i;
 while up[r] ≠ 0 do //find root//
 r := up[r];
 if i ≠ r then //compress path//
 k := up[i];
 while k ≠ r do
 up[i] := r;
 i := k;
 k := up[k]
 return(r)
}

37

39

38

Example

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is O(1) and for a PC-Find is O(log n).
- Time complexity for m ≥ n operations on n elements is O(m log* n) where log* n is a very slow growing function.
 - log * n < 7 for all reasonable n. Essentially constant time per operation!

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - worst case time for a PC-Find is O(log n).
- An individual operation can be costly, but over time the average cost per operation is not.

Find Solutions

Recursive

```
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
if up[x] = 0 then return x
else return Find(up,up[x]);
}

Iterative
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
while up[x] ≠ 0 do
    x := up[x];
return x;
}
```