Self adjusting Trees

Splay Trees
* Ordinary binary search trees have no balance
conditions
CSE 326 > what you get from insertion order is it
Data Structures Balanced trees like AVL trees enforce a
Unit 6 balance condition when nodes change

> tree is always balanced after an insert or delete

» Self-adjusting trees get reorganized over time
Reading: Sections 4.5-4.6 as nodes are accessed
> Tree adjusts after insert, delete, or find

Splay Trees Splay Tree Terminology

 Splay trees are tree structures that: e Let)F() be a non-root n(;)de with = 2 ancestors.
> Are not perfectly balanced all the time * Pislts parent node.

_ » G is its grandparent node.
> Data most recently accessed is near the root.
(principle of locality; 80-20 “rule”)

* The procedure: & © <2 &
> After node X is accessed, perform “splaying” P PO P P
operations to bring X to the root of the tree.
> Do this in a way that leaves the tree more 0 0 0 0

balanced as a whole

Zig-Zig and Zig-Zag Splay Tree Operations

Parent and grandparent Parent and grandparent 1. Helpful if nodes contain a parent pointer.
in same direction. in different directions. f parent
zig-zig | element
\ G left / \nght
< e 9 2. When X is accessed, apply one of six rotation routines.

* Single Rotations (X has a P (the root) but no G)
ZigFromLeft, ZigFromRight

* Double Rotations (X has both a P and a G)

ZigZigFromLeft, ZigZigFromRight
ZigZagFromLeft, ZigZagFromRight

Zig at depth 1 (root) Zig at depth 1

e “Zig” is just a single rotation, as in an AVL tree
* Let R be the node that was accessed (e.g. using

Find) oot 0 root
C ZigFromLeft A C A B A

M\ \)

» Suppose Q is now accessed using Find

* ZigFromLeft moves R to the top - faster access
next time « ZigFromRight moves Q back to the top

Zig-Zag operation

» “Zig-Zag” consists of two rotations of the
opposite direction (assume R is the node that
was accessed)

P 7 /R
\ | /AN
\ D (igFromRighty \R/DP (ZigFromLefy ~ Q ~.B
ORI T —— N\ T
A \Q.C A B C D
/\
B C A B
ZigZagFromLeft

Decreasing depth -
"autobalance"

/
Q F Q F A T Q
/\ Qé\ 7/ \ JANENA
R E E P A S D P
/\ VAN A I\ /\
S D A S B R E F B C E
@\ /\ /\
C B R C D
/\
A B C D
(a) (b) (© (d
Find(T) Find(R)

11

Zig-Zig operation

» “Zig-Zig” consists of two single rotations
of the same direction (R is the node that
was accessed)

(I\ /AW
D Semisplay /\ /P\ Full splay A [Q\
n————- ————
/R\ C (zigFromLefty A B C D (ZigFromLeft) B

P
/\
A B g C D
ZigZigFromLeft

10

Splay Tree Insert and Delete

* Insert x
> Insert x as normal then splay x to root.

e Delete x

> Splay x to root and remove it. (note: the node does
not have to be a leaf or single child node like in
BST delete.) Two trees remain, right subtree and
left subtree.

> Splay the max in the left subtree to the root

> Attach the right subtree to the new root of the left
subtree.

12

Example Insert With Self-Adjustment

 Inserting in order 1,2,3,...,8
» Without self-adjustment

L @

ZigFromRight
O(n?) time for n Insert 2 @ > @

® @
3 ZgF omRight @
A B

With Self-Adjustment Example Deletion
delete(8) @ splay (zig-zag) @

4 ®
e s éé@é

(D/ C@/ é Egj Splay (zig)

attach
Each Insert takes O(1) time therefore O(n) time for n Insert!! é é é éé

15

remove

Analysis of Splay Trees

» Splay trees tend to be balanced

> M operations takes time O(M log N) for M > N
operations on N items. (proof is difficult)

> Amortized O(log n) time.

» Splay trees have good “locality” properties

> Recently accessed items are near the root of
the tree.

> Items near an accessed one are pulled toward
the root.

17

