
Sorting
CSE 326

Data Structures
Unit 15

Reading:
Sections 7.1-7.3 Bubble and Insert sort,

7.5 Heap sort,

Section 3.2.6 Radix sort,

Section 7.6 Mergesort,

Section 7.7 Quicksort,

Section 7.8 Lower bound

2

Sorting

• Input

› an array A of data records
› a key value in each data record
› a comparison function which imposes a

consistent ordering on the keys (e.g., integers)

• Output

› reorganize the elements of A such that
• For any i and j, if i < j then A[i] ≤ A[j]

3

Consistent Ordering

• The comparison function must provide a
consistent ordering on the set of possible
keys
› You can compare any two keys and get back

an indication of a < b, a > b, or a = b
› The comparison functions must be consistent

• If compar e(a, b) says a<b, then compar e(b, a) must say
b>a

• If compar e(a, b) says a=b, then compar e(b, a) must say
b=a

4

Why Sort?

• Sorting algorithms are among the most
frequently used algorithms in computer
science

• Allows binary search of an N-element
array in O(log N) time

• Allows O(1) time access to kth largest
element in the array for any k

• Allows easy detection of any duplicates

5

Evaluating a Sort Algorithm: Time

• How fast is the algorithm?
› The definition of a sorted array A says that for any

i<j, A[i] < A[j]
› This means that you need to at least check on

each element at the very minimum, I.e., at least
O(N)

› And you could end up checking each element
against every other element, which is O(N2)

› The big question is: How close to O(N) can you
get?

6

Space

• How much space does the sorting algorithm
require in order to sort the collection of items?
› Is copying needed? O(n) additional space
› In-place sorting – no copying – O(1) additional

space
› Somewhere in between for “temporary”, e.g.

O(logn) space
› External memory sorting – data so large that does

not fit in memory

7

Stability

• Stability: Does it rearrange the order of input
data records which have the same key value
(duplicates)?
› E.g. Phone book sorted by name. Now sort by

county – is the list still sorted by name within each
county?

› Extremely important property for databases
› A stable sorting algorithm is one which does not

rearrange the order of duplicate keys

8

Example

5a 8 3a 5b 4 3b 2 3c

5a 83a 5b43b2 3c

5a 8 3a 5b 4 3b 2 3c

5a 83a 5b43b2 3c

Stable Sort Unstable Sort

9

Bubble Sort

• “Bubble” elements to to their proper place in
the array by comparing elements i and i+1,
and swapping if A[i] > A[i+1]
› Bubble every element towards its correct position

• last position has the largest element
• then bubble every element except the last one towards

its correct position
• then repeat until done or until the end of the quarter,

whichever comes first ...

10

Bubblesort

bubbl e(A[1. . n] : i nt eger ar r ay, n : i nt eger) : {
i , j : i nt eger ;
f or i = 1 t o n- 1 do

f or j = 2 t o n–i +1 do
i f A[j - 1] > A[j] t hen SWAP(A[j - 1] , A[j]) ;

}

SWAP(a, b) : {
t : i nt eger ;
t : =a; a: =b; b: =t ;

}

i=1: Largest element is placed at last position
i=k: kth Largest element is placed at kth to last position

11

Bubblesort (recursive)

bubbl e(A[1. . n] : i nt eger ar r ay, n : i nt eger) :
{

}

12

Put the largest element in its
place

1 2 3 8 7 9 10 12 23 18 15 16 17 14

2 3larger value? 8 8

7 8

swap

1 2 3 7 8 9 10 12 23 18 15 16 17 14

9 10 12 23

18 23

swap

23

15 16 17 14

18 15

swap

23 16 17 14

18 15

swap

16 23 17 14

18 15

swap

16 17 23 14

18 15

swap

16 17 14 23

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

9 10 12 23 18 15 16 17 141 2 3

13

Put 2nd largest element in its
place

1 2 3 7 8 9 10 12

2 3larger value? 7 8

7 8

swap

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

9 10 121 2 3

18 15 16 17 14 23

15 18 16 17 14 23

9 10 12 18 18

swap

15 16 18 17 14 23
swap

15 16 17 18 14 23
swap

15 16 17 14 18 23

Two elements done, only n-2 more to go ...

14

Bubble Sort: Just Say No

• “Bubble” elements to to their proper place
in the array by comparing elements i and
i+1, and swapping if A[i] > A[i+1]

• We bubblize for i=1 to n (i.e, n times)
• Each bubblization is a loop that makes n-i

comparisons
• This is O(n2)

15

Insertion Sort

• What if first k elements of array are
already sorted?
› 4, 7, 12, 5, 19, 16

• We can shift the tail of the sorted elements
list down and then insert next element into
proper position and we get k+1 sorted
elements
› 4, 5, 7, 12, 19, 16

16

Insertion Sort

I nser t i onSor t (A[1. . N] : i nt eger ar r ay, N: i nt eger) {

i , j , t emp: i nt eger ;

f or i = 2 t o N {

t emp : = A[i] ;

j : = i - 1;

whi l e j > 1 and A[j - 1] > t emp {

A[j] : = A[j - 1] ; j : = j –1;

A[j] = t emp;

}

}

}

• Is Insertion sort in place? Stable? Running time = ?
• Have we used something similar before?

17

Example

1 2 3 8 7 9 10 12 23 18 15 16 17 14

1 2 3 7 8 9 10 12 23 18 15 16 17 14

18 23 15 16 17 14

18 15 23 16 17 14

15 18 23 16 17 14

15 18 16 23 17 14

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

1 2 3 7 8 9 10 12

15 16 18 23 17 141 2 3 7 8 9 10 12

18

Example

15 16 18 17 23 141 2 3 7 8 9 10 12

15 16 17 18 23 141 2 3 7 8 9 10 12

15 16 17 18 14 231 2 3 7 8 9 10 12

15 16 17 14 18 231 2 3 7 8 9 10 12

15 16 14 17 18 231 2 3 7 8 9 10 12

15 14 16 17 18 231 2 3 7 8 9 10 12

14 15 16 17 18 231 2 3 7 8 9 10 12

19

Insertion Sort Characteristics

• In place and Stable
• Running time

› Worst case is O(N2)
• reverse order input
• must copy every element every time

• Good sorting algorithm for almost sorted
data
› Each item is close to where it belongs in

sorted order.

20

Inversions

• An inversion is a pair of elements in wrong
order
› i < j but A[i] > A[j]

• By definition, a sorted array has no
inversions

• So you can think of sorting as the process
of removing inversions in the order of the
elements

21

Inversions

• A single value out of place can cause
several inversions

value

index

1 2 3 8 7 9 10 12
0 1 2 3 4 5 6 7

23 14 15 16
8 9 10 11 12 13

17 18

22

Reverse order

• All values out of place (reverse order)
causes numerous inversions

value

index

1 2 3 8 7 9 10 12

0 1 2 3 4 5 6 7

23 18 17 16

8 9 10 11 12 13

15 14

23

Inversions

• Our simple sorting algorithms so far swap
adjacent elements and remove just one
inversion at a time
› Their running time is proportional to number

of inversions in array

• Given N distinct keys, the maximum
possible number of inversions is

2
1)n-(n

i1...2)(n1)(n
1n

1i

==++−+− �
−

=

24

Inversions and Adjacent Swap
Sorts

• "Average" list will contain half the max
number of inversions =
› So the average running time of Insertion

sort is Θ(N2)
• Any sorting algorithm that only swaps

adjacent elements requires Ω(N2) time
because each swap removes only one
inversion (lower bound)

()
4

n1n −

25

Heap Sort

• We use a Max-Heap
• Root node = A[1]
• Children of A[i] = A[2i], A[2i+1]
• Keep track of current size N (number of

nodes)

N = 5

value

index

7

65

42

7 5 6 2 4
1 2 3 4 5 6 7 8

26

Using Binary Heaps for
Sorting

• Build a max-heap
• Do N DeleteMax operations

and store each Max
element as it comes out of
the heap

• Data comes out in largest
to smallest order

• Where can we put the
elements as they are
removed from the heap?

Build
Max-heap

DeleteMax

7

65

42

6

45

72

27

1 Removal = 1 Addition
• Every time we do a DeleteMax, the heap

gets smaller by one node, and we have one
more node to store
› Store the data at the end of the heap array
› Not "in the heap" but it is in the heap array

N = 4

value

index

6 5 4 2 7
1 2 3 4 5 6 7 8

6

45

72

28

Repeated DeleteMax

N = 3

5 2 4 6 7
1 2 3 4 5 6 7 8

5

42

76

N = 2

4 2 5 6 7
1 2 3 4 5 6 7 8

4

52

76

29

Heap Sort is In-place

• After all the DeleteMaxs, the heap is gone
but the array is full and is in sorted order

N = 0

value

index

2 4 5 6 7
81 2 3 4 5 6 7

2

54

76

30

Heapsort: Analysis

• Running time
› time to build max-heap is O(N)
› time for N DeleteMax operations is N O(log N)
› total time is O(N log N)

• Can also show that running time is Ω(N log N)
for some inputs,
› so worst case is ΘΘΘΘ(N log N)
› Average case running time is also O(N log N)

• Heapsort is in-place but not stable (why?)

31

Bucket Sort: Sorting Integers
• The goal: sort N numbers, all between 1 to k.

• Example: sort 8 numbers 3,6,7,4,11,3,5,7. All
between 1 to 12.

• The method: Use an array of k queues. Queue j
(for 1 ≤ j ≤ k) keeps the input numbers whose
value is j.

• Each queue is denoted ‘a bucket’.

• Scan the list and put the elements in the buckets.
• Output the content of the buckets from 1 to k.

32

Bucket Sort: Sorting Integers
• Example: sort 8 numbers 3,6,7,4,11,3,9,7 all

between 1 to 12.

1 2 3 4 5 6 7 8 9 10 11 12

3
3

4 976 11
7

• Step 1: scan the list and put the elements in
the queues

• Step 2: concatenate the queues

3,3,4,6,7,7,9,11

• Time complexity: O(n+k).

3
3

4 976 11
7

33

Radix Sort: Sorting integers
• Historically goes back to the 1890 census.

• Radix sort = multi-pass bucket sort of integers
in the range 0 to BP-1

• Bucket-sort from least significant to most
significant “digit” (base B)

• Requires P(B+N) operations where P is the
number of passes (the number of base B digits
in the largest possible input number).

• If P and B are constants then O(N) time to sort!

34

67
123

38
3

721
9

537
478

Bucket sort
by 1’s digit

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

Input data

This example uses
B=10 and base 10
digits for simplicity of
demonstration. Larger
bucket counts should
be used in an actual
implementation.

Radix Sort Example

721
3

123
537

67
478

38
9

After 1st pass

35

Bucket sort
by 10’s
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

Radix Sort Example

721
3

123
537

67
478

38
9

After 1st pass After 2nd pass
3
9

721
123
537

38
67

478

36

Bucket sort
by 100’s
digit

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

Radix Sort Example

After 2nd pass
3
9

721
123
537

38
67

478

After 3rd pass
3
9

38
67

123
478
537
721

Invariant: after k passes the low order k digits are sorted.

37

Properties of Radix Sort

• Not in-place
› needs lots of auxiliary storage.

• Stable
› equal keys always end up in same bucket in the

same order.

• Fast
› Time to sort N numbers in the range 0 to BP-1 is

O(P(B+N)) (P iterations, B buckets in each)

38

“Divide and Conquer”

• Very important strategy in computer science:
› Divide problem into smaller parts
› Independently solve the parts
› Combine these solutions to get overall solution

• Idea 1: Divide array into two halves,
recursively sort left and right halves, then
merge two halves à Mergesort

• Idea 2 : Partition array into items that are
“small” and items that are “large”, then
recursively sort the two sets à Quicksort

39

Mergesort

• Divide it in two at the midpoint
• Conquer each side in turn (by

recursively sorting)
• Merge two halves together

8 2 9 4 5 3 1 6

40

Mergesort Example

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2 9 4 5 3 1 6

2 8 4 9 3 5 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

41

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

Auxiliary array

42

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 Auxiliary array

43

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 2 3 4 5 Auxiliary array

44

Merging

i j

target

normal

i j

target

Left completed
first

copy

45

Merging

i j

target

Right completed
first

first

second

46

Merging

Mer ge(A[] , T[] : i nt eger ar r ay, l ef t , r i ght : i nt eger) : {
mi d, i , j , k, l , t ar get : i nt eger ;
mi d : = (r i ght + l ef t) / 2;
i : = l ef t ; j : = mi d + 1; t ar get : = l ef t ;
whi l e i < mi d and j < r i ght do

i f A[i] < A[j] t hen T[t ar get] : = A[i] ; i : = i + 1;
el se T[t ar get] : = A[j] ; j : = j + 1;

t ar get : = t ar get + 1;
i f i > mi d t hen / / l ef t compl et ed/ /

f or k : = l ef t t o t ar get - 1 do A[k] : = T[k] ;
i f j > r i ght t hen / / r i ght compl et ed/ /

k : = mi d; l : = r i ght ;
whi l e k > i do A[l] : = A[k] ; k : = k- 1; l : = l - 1;
f or k : = l ef t t o t ar get - 1 do A[k] : = T[k] ;

}

47

Recursive Mergesort

Mer gesor t (A[] , T[] : i nt eger ar r ay, l ef t , r i ght : i nt eger) : {
i f l ef t < r i ght t hen

mi d : = (l ef t + r i ght) / 2;
Mer gesor t (A, T, l ef t , mi d) ;
Mer gesor t (A, T, mi d+1, r i ght) ;
Mer ge(A, T, l ef t , r i ght) ;

}

Mai nMer gesor t (A[1. . n] : i nt eger ar r ay, n : i nt eger) : {
T[1. . n] : i nt eger ar r ay;
Mer gesor t [A, T, 1, n] ;

}

48

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

49

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Need of a last copy

50

Iterative Mergesort

I t er at i veMer gesor t (A[1. . n] : i nt eger ar r ay, n : i nt eger) : {
/ / pr econdi t i on: n i s a power of 2/ /

i , m, par i t y : i nt eger ;
T[1. . n] : i nt eger ar r ay;
m : = 2; par i t y : = 0;
whi l e m < n do

f or i = 1 t o n – m + 1 by m do
i f par i t y = 0 t hen Mer ge(A, T, i , i +m- 1) ;

el se Mer ge(T, A, i , i +m- 1) ;
par i t y : = 1 – par i t y ;
m : = 2* m;

i f par i t y = 1 t hen
f or i = 1 t o n do A[i] : = T[i] ;

}

How do you handle non-powers of 2?
How can the final copy be avoided?

51

Mergesort Analysis

• Let T(N) be the running time for an
array of N elements

• Mergesort divides array in half and calls
itself on the two halves. After returning,
it merges both halves using a temporary
array

• Each recursive call takes T(N/2) and
merging takes O(N)

52

Mergesort Recurrence
Relation

• The recurrence relation for T(N) is:

› T(1) < a
• base case: 1 element array à constant time

› T(N) < 2T(N/2) + dN
• Sorting N elements takes

– the time to sort the left half
– plus the time to sort the right half
– plus an O(N) time to merge the two halves

• T(N)= ?

53

Mergesort Analysis
Upper Bound

logn)O(n

nlogdncn

2n ifkdnnT(1)

kdn)T(n/22

3dn8T(n/8)

2dndn/4)4(2T(n/8)

2dn4T(n/4)

dn dn/2)2(2T(n/4)

2 of power a is n Assumingdn2T(n/2)T(n)

2

k

kk

=
+≤

=+=

+≤

+=
++≤

+=
++≤

+≤

�

n = 2k, k = log n

54

Properties of Mergesort

• Not in-place
› Requires an auxiliary array (O(n) extra

space)

• Stable
› Make sure that left is sent to target on

equal values.

• Iterative Mergesort reduces copying.

55

Quicksort

• Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space
that MergeSort does
› Partition array into left and right sub-arrays

• Choose an element of the array, called pivot
• the elements in left sub-array are all less than pivot
• elements in right sub-array are all greater than pivot

› Recursively sort left and right sub-arrays
› Concatenate left and right sub-arrays in O(1) time

56

“Four easy steps”

• To sort an array S
1. If the number of elements in S is 0 or 1,

then return. The array is sorted.
2. Pick an element v in S. This is the pivot

value.

3. Partition S-{v} into two disjoint subsets, S1
= {all values x≤v}, and S2 = {all values x≥v}.

4. Return QuickSort(S1), v, QuickSort(S2)

57

The steps of QuickSort

13
81

92

43

65

31 57

26

75
0

S select pivot value

13 8192

43 65
31

5726

750S1 S2
partition S

13 4331 57260

S1
81 927565

S2

QuickSort(S1) and
QuickSort(S2)

13 4331 57260 65 81 9275S Voila! S is sorted
[Weiss]

58

Details, details

• Implementing the actual partitioning
• Picking the pivot

› want a value that will cause |S1| and |S2| to
be non-zero, and close to equal in size if
possible

• Dealing with cases where an element
equals the pivot

59

Quicksort Partitioning

• Need to partition the array into left and right sub-
arrays
› the elements in left sub-array are ≤ pivot
› elements in right sub-array are ≥ pivot

• How do the elements get to the correct partition?
› Choose an element from the array as the pivot
› Make one pass through the rest of the array and

swap as needed to put elements in partitions

60

Partitioning:Choosing the pivot

• One implementation (there are others)

› median3 finds pivot and sorts left, center,
right
• Median3 takes the median of leftmost, middle, and

rightmost elements
• An alternative is to choose the pivot randomly (need a

random number generator; “expensive”)
• Another alternative is to choose the first element (but

can be very bad. Why?)

› Swap pivot with next to last element

61

Partitioning in-place

› Set pointers i and j to start and end of array

› Increment i until you hit element A[i] > pivot
› Decrement j until you hit element A[j] < pivot

› Swap A[i] and A[j]
› Repeat until i and j cross

› Swap pivot (at A[N-2]) with A[i]

62

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

0 1 4 9 7 3 5 2 6 8

i j

Example

Place the largest at the right
and the smallest at the left.
Swap pivot with next to last element.

Median of 0, 6, 8 is 6. Pivot is 6

Choose the pivot as the median of three

63

Example

0 1 4 9 7 3 5 2 6 8

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

i j

Move i to the right up to A[i] larger than pivot.
Move j to the left up to A[j] smaller than pivot.
Swap

64

0 1 4 2 5 3 7 9 6 8

i j

0 1 4 2 5 3 7 9 6 86

ij

0 1 4 2 5 3 6 9 7 8

ij

S1 < pivot pivot S2 > pivot

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 7 3 5 9 6 86

i j

0 1 4 2 5 3 7 9 6 8

i j

Example

Cross-over i > j

65

Recursive Quicksort

Qui cksor t (A[] : i nt eger ar r ay, l ef t , r i ght : i nt eger) : {
pi vot i ndex : i nt eger ;
i f l ef t + CUTOFF ≤ r i ght t hen

pi vot : = medi an3(A, l ef t , r i ght) ;
pi vot i ndex : = Par t i t i on(A, l ef t , r i ght - 1, pi vot) ;
Qui cksor t (A, l ef t , pi vot i ndex – 1) ;
Qui cksor t (A, pi vot i ndex + 1, r i ght) ;

el se
I nser t i onsor t (A, l ef t , r i ght) ;

}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.

66

Quicksort Best Case
Performance

• Algorithm always chooses best pivot
and splits sub-arrays in half at each
recursion
› T(0) = T(1) = O(1)

• constant time if 0 or 1 element

› For N > 1, 2 recursive calls plus linear time
for partitioning

› T(N) = 2T(N/2) + O(N)
• Same recurrence relation as Mergesort

› T(N) = O(N log N)

67

Quicksort Worst Case
Performance

• Algorithm always chooses the worst pivot –
one sub-array is empty at each recursion
› T(N) ≤ a for N ≤ C
› T(N) ≤ T(N-1) + bN
› ≤ T(N-2) + b(N-1) + bN
› ≤ T(C) + b(C+1)+ … + bN
› ≤ a +b(C + (C+1) + (C+2) + … + N)
› T(N) = O(N2)

• Fortunately, average case performance is
O(N log N) (see text for proof)

68

Properties of Quicksort

• Not stable because of long distance
swapping.

• No iterative version (without using a stack).

• Pure quicksort not good for small arrays.
• “In-place”, but uses auxiliary storage because

of recursive call (O(logn) space).

• O(n log n) average case performance, but
O(n2) worst case performance.

69

How fast can we sort?

• Heapsort, Mergesort, and Quicksort all
run in O(N log N) best case running
time

• Can we do any better?
• No, if sorting is comparison-based.
• We saw that radix sort is O(N) but it is

only for integers from bounded-range.

70

Sorting Model

• Recall the basic assumption: we can only
compare two elements at a time
› we can only reduce the possible solution space by

half each time we make a comparison

• Suppose you are given N elements
› Assume no duplicates

• How many possible orderings can you get?
› Example: a, b, c (N = 3)

71

Permutations

• How many possible orderings can you get?
› Example: a, b, c (N = 3)
› (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
› 6 orderings = 3•2•1 = 3! (i.e., “3 factorial”)
› All the possible permutations of a set of 3 elements

• For N elements
› N choices for the first position, (N-1) choices for the

second position, …, (2) choices, 1 choice
› N(N-1)(N-2)�(2)(1)= N! possible orderings

72

Decision Tree
a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

The leaves contain all the possible orderings of a, b, c

73

Decision Trees
• A Decision Tree is a Binary Tree such that:

› Each node = a set of orderings
• i.e., the remaining solution space

› Each edge = 1 comparison
› Each leaf = 1 unique ordering
› How many leaves for N distinct elements?

• N!, i.e., a leaf for each possible ordering

• Only 1 leaf has the ordering that is the
desired correctly sorted arrangement

74

Decision Trees and Sorting
• Every comparison-based sorting algorithm

corresponds to a decision tree
› Finds correct leaf by choosing edges to follow

• i.e., by making comparisons

› Each decision reduces the possible solution space
by one half

• Run time is ≥ maximum no. of comparisons
› maximum number of comparisons is the length of

the longest path in the decision tree, i.e. the height
of the tree

75

Decision Tree Example

a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

3! possible orders

actual order

76

How many leaves on a tree?

• Suppose you have a binary tree of height d .
How many leaves can the tree have?
› d = 1 à at most 2 leaves,
› d = 2 à at most 4 leaves, etc.

77

Lower bound on Height

• A binary tree of height d has at most 2d leaves
› depth d = 1 à 2 leaves, d = 2 à 4 leaves, etc.
› Can prove by induction

• Number of leaves, L < 2d

• Height d > log2 L

• The decision tree has N! leaves

• So the decision tree has height d ≥ log2(N!)

78

log(N!) is Ω(NlogN)

()

)log(
2

log
2

)2log(log
2

2
log

2

2
log)2log()1log(log

1log2log)2log()1log(log

)1()2()2()1(log)!log(

NN

N
N

N
N

N

NN

N
NNN

NNN

NNNN

Ω=

−=−≥

≥

++−+−+≥

+++−+−+=
⋅−⋅−⋅=

�

�

�

select just the
first N/2 terms

each of the selected
terms is ≥ logN/2

nennn)/(2! π≈
Sterling’s formula

79

Summary of Sorting

• Sorting choices:
› O(N2) – Bubblesort, Insertion Sort
› O(N log N) average case running time:

• Heapsort: In-place, not stable.
• Mergesort: O(N) extra space, stable.
• Quicksort: claimed fastest in practice but, O(N2) worst

case. Needs extra storage for recursion. Not stable.

› Run time of any comparison-based sorting
algorithm is Ω(N log N)

› O(N) – Radix Sort: fast and stable. Not
comparison based. Not in-place.

