1. Let n=3k for some k. Let A be an array of size n.

Let A1 be the leftmost third of A.

Let A2 be the middle third of A.

Let A2 be the rightmost third of A.

We say that A is ‘crazy-sorted’ if the element in A3 are the largest elements in A, the elements in A2 are the smallest n/3 elements in A, and the elements in the A1 the the middle n/3 elements of A.
For example, A=[15,9,10,3,1,5,28,36,17] is crazy sorted.

We say that A is ‘recursively-crazy-sorted’ if it is crazy sorted, and each of A1, A2, A3 is crazy-sorted-recursively. An array of size 1 is defined to be crazy sorted.
For example, A=[10,9,15,3,1,5,28,17,36] is recursively-crazy-sorted.

Write a function that gets as input a sorted array (in non-decreasing order), and rearrange the elements such that the resulting array is ‘recursively-crazy-sorted’

crazy_sort(A[] array of int, n int):void

{

int i, third = n/3;

if n=1 return;

for i=1 to third swap(A[i], A[i+third]);

crazy_sort(A, third);

crazy_sort(A+third, third);

crazy_sort(A+2*third, third);

}

2.a. Propose a data structure that supports the stack ‘push’ and ‘pop’ operations and a third operation ‘find_min’, which returns the smallest element in the data structure.

All three operations in O(1) worst case.
Possible Solution:

Keep a variable ‘currentMin’ and an additional stack -‘minStack’. Push to minStack any new element which is smaller than currentMin (and update currentMin). Pop from minStack any element that is popped from the main stack (and update currentMin to be the new ‘top’ of minStack).

2.b Can you add ‘delete_min()’ in O(1)?

Answer:

No, otherwise we can sort in O(n) contradicting the O(n lon n) lower bound:

1. For i=1 to n push(A[i])

2. For i=1 to n delete_min()

small

mid

large

large

mid

small

A3 - large

A1 - mid

A2 - small

