Minimum Spanning Tree

CSE 326
Data Structures
Unit 14

Reading: Chapter 9.5

Minimum Spanning Tree

+ Each edge has a cost.
* Find a minimal-cost subset of edges that

will keep the graph connected. (must be a
ST).

21 75
18 80

Example of a Spanning Tree

21 75
25 l 64
18 80

Price of this tree = 18+19+4+10+17+64

Minimum Spanning Tree Problem

* Input: Undirected connected graph G =

(V,E) and a cost function C from E to the
reals. C(e) is the cost of edge e.

* Output: A spanning tree T with minimum

total cost. That is: T that minimizes

c(mM =3 Cle)

edT

- Another formulation: Remove from G

edges with maximal total cost, but keep
G connected.

Minimum Spanning Tree

* Boruvka 1926
» Kruskal 1956
* Prim 1957 also by Jarnik 1930

- Karger, Klein, Tarjan 1995
- Randomized linear time algorithm

- Probably not practical, but very
interesting

Minimum Spanning Tree Problem

» Definition: For a given partition of V into

U and V-U, the cut defined by U is the
set of edges with one end in U and one
end in V-U.

U __gT_’ V-U

N

i

The cut defined by U

An Algorithm for MST

* The algorithm colors the edges of the
graph. Initially, all edges are black.

* A blue edge - belongs to T.
* A red edge - does not belong to T.

+ We continue to color edges until we have
n-1 blue edges.

+ How do we select which edge to color
next? How do we select its color?

The Blue/Red Edge-coloring Rules

« The blue rule: Find a cut with no blue

edge. Color blue the cheapest black edge
in the cut.

* The red rule: Find a cycle with no red

edge. Color red the most expensive black
edge in the cycle.

These rules can be applied in any order.
We will see two specific algorithms.

Example of Blue/Red rules (1)

Consider the cut defined by {2,3}
- color (1,2) blue

Example of Blue/Red rules (2)

Consider the cycle (7-5-4)
- color (4,5) red

10

Example of Blue/Red rules (3)

Consider the cut defined by {3,5,6}
- color (5,7) blue

11

Example of Blue/Red rules (4)

Consider the cycle (1-2-7-5)
- color (1,5) red

12

Example of Blue/Red rules (5)

Consider the cycle (1-2-7-5-6)
- color (2,7) red.

13

Example of Blue/Red rules (6)

Consider the cut defined by {4}
- color (4,7) blue

14

Example of Blue/Red rules (7)

Consider the cut defined by {6}
- color (5,6) blue

15

Example of Blue/Red rules (8)

Consider the cut defined by {3}
- color (2,3) blue

16

Example of Blue/Red rules (9)

Consider the cut defined by {1,2,3}
- color (1,6) blue

17

Example of Blue/Red rules (10)

Final MST

18

Proof of Blue/Red Rules

* Claim: for any k = 0, after we color k
edges there exists an MST that includes
all the blue edges and none of the red
edges.

* Proof: By induction on k.
+ Base: k=0 trivially holds.

+ Step: Assume this is true after we color
k-1 edges e, e,,.. ;. Consider the
coloring of e,.

19

Case 1: Applying the Blue Rule

C(u,v) is minimal

20

Case 1. Applying the Blue Rule

T C(u,v) is minimal
Cluv) < C(xy)

If (u,v)OT, then T must includes some other edge
(x,y) in the cut defined by U (T is connected, so
there is a path u—v). 21

Case 1. Applying the Blue Rule

Consider T' = T O (u,v) -(x.y)

T is also a minimum
C(T) = C(T) + C(u,v) - C(x.y) spanning tree, and it
C(T) < C(T) includes e,

22

Case 2: Applying the Red Rule

C(u,v) is maximal
in some cycle

Assume (u,v)OT.

By removing (u-v) from T we get two components.

23

Case 2: Applying the Red Rule

C(u,v) is maximal
in some cycle

The cycle that causes us to color (u-v) red includes an
edge connecting the two component (whose cost is at
most c(u,v).

L There is an alternative MST, that does not include ¢,

One more point: We can always proceed

Select an edge e.

*If e connects two blue ‘Otherwise, e closes
sub-trees, then there isa a cycle in which e is
cut without any blue edge the most expensive
and we can run the blue edge (why?) so we
rule on this cut. can color e red.

25

Kruskal's Greedy Algorithm

Sort the edges by increasing cost;
Initialize T to be empty:;
For each edge e chosen in increasing order do
if adding e does not form a cycle then
addeto T

Proof: The algorithm follows the blue/red rules:
-If e closes a cycle - apply the red rule (by the
sorting, e is the most expensive in this cycle).
‘Otherwise - apply the blue rule (e connects two
components, consider the cut defined by any of
them. e is the cheapest edge in this cut)

26

Example of Kruskal 1

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

27

Example of Kruskal 2

4}{2,1}{7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
1 1 2 2 3 3 3 3 4

28

Example of Kruskal 2

A2 1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
N1 2 2 3 3 3 3 4

29

Example of Kruskal 3

Xg{} @{55\}{5,6} {5,4} {16} {2,7}{2.,3} {34} {1.5}
1 1 2 2 3 3 3 3 4

30

Example of Kruskal 4

\&gi} &Q{*Q{XQ{SA} {1,6}{2,7} {2.3} {3,4} {15}
1 1 2 2 3 3 3 3 4

31

Example of Kruskal 5

Xg{} Exi}ﬁs\}{%im{} {1,6} {2,7} {2,3} {3,4} {15}
1 1 2 2 3 3 3 3 4

32

Example of Kruskal 6 Example of Kruskal 7

\&gi} bzi}{*i{%@%}hg} {2,7}{2,3} {3.4} {1.5} Xg{} @{55\}{‘56\%{}&&} EXQ{ZB} {3.4}{1,5}
1 1 2 2 3 3 3 4 1 1 2 2 3 3 3 4

33 34

Example of Kruskal 8 Example of Kruskal 9

\&gi} in}ﬁs\}{%i}?%}hg ixiﬂg} (3.4} {1,5} Xgi} @{55\}{‘5&}?&{}&& EX@Q} {&Q{\i
1 1 2 2 3 3 3 4 1 1 2 2 3 3 3 4

5

Data Structures for Kruskal

- Sorted edge list

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

- Disjoint Union / Find
- Union(a,b) - union the disjoint sets
named by aand b

- Find(a) returns the name of the set
containing a

Remark: The set name is one of its members
37

Example of DU/F (1)

Find(5) = 7
Find(4) = 7

Xg{} @{35\}{‘5@5,4} {1,6}{2,7}{2,3} {3,4} {1.5}
1 1 2 2 3 3 3 3 4

u,vin the same set (u,v)is hot addedto T s

Example of DU/F (2)

Find(1) = 1
Find(6) = 7

\&gi} &Q{*Q{XQEQ{LG} {2,7}{2,3} {3,4} {15}
1 1 2 2 3 3 3 3 4

uyvindifferent sets add (u,v) to T, union the sets. |

Example of DU/F (3)

Union(1,7)

g5

Xg{} &Q{@ww{lﬂ}{zz} {2,3}{3,4} {15}
1 1 2 2 3 3 3 3 4

40

Kruskal's Algorithm with DU / F

Sort the edges by increasing cosf;
TInitialize T to be empty;
for each edge {i,j} chosen in increasing order do
u := Find(i);
v := Find(j);
if (u#v)then
add{i,j} to T;
Union(u,v);

41

Amortized Complexity

+ Disjoint union/find can be implemented

such that the average time per operation is
essentially a constant.

* An individual operation can be costly, but

over time the average cost per operation is
not.

* On average, each U/F operation takes

O(m@(m,n}) time.

~_ Ekerman function.
Practically, this is
a constant. "

Evaluation of Kruskal

G has n vertices and m edges.
Sort the edges - O(m log m).

Traverse the sorted edge list using
efficient UF - O(m a(m,n)).
Total time is O(m log m).

Prim's Algorithm

+ We maintain a single tree.
* Initially, the tree consists of one vertex.
* For each vertex not in the tree maintain the

cheapest edge to a vertex in the tree (if
exists).

Prim's Algorithm 6

b"

49

Prim's Algorithm 7

Correctness Proof for Prim

* Repeatedly executes the blue rule (n-1
times).

* Ineach step we consider the cut defined
by the vertices that are already in T.

51

Data Structures for Prim

- Adjacency Lists - we need to look at all the

edges from a newly added vertex.

* Array for the best edges to the tree.

12 345 67
to 2 11112
COSt 3 413|3

52

Data Structures for Prim

* Priority queue for all edges to the tree (orange
edges).
- Insert, delefte-min, delete (e.g. binary heap).

Evaluation of Prim

* n vertices and m edges.
* Priority queue O(log n) per operation.
* O(m) priority queue operations.

- An edge is visited when a vertex incident
to it joins the tree.

» Time complexity is O(m log n).

1234567 12345 6 - Storage complexity is O(m).
to 2] [1]1]2 to 2[7]7[1
cost 3| 4]3]3 cost 31011|3
53 54
Kruskal vs Prim
* Kruskal
- Simple

- Good with sparse graphs - O(m log m)
* Prim
- More complicated

- Perhaps better with dense graphs -
O(m log n)

Note: O(log n)= O(log m) (since m<n?)

55

