Pointers and Lists Basic Types and Arrays

» Basic Types

CSE 326 _ _ _
> integer, real (floating point), boolean (0,1),
Data Structures character
> AJ0..99] : integer array
Reading: SeCtion 3.2 The L|St ADT A ‘0 ‘ 1‘ 2‘ 3‘ 4‘ 5‘ 6‘ 7‘ D:E%
Al 5]
Records and Pointers Record Definition
» Record (also called a struct) » Record definition creates a new type
> Group data together that are related Definition
X : conpl ex pointer record conplex : (
real _part : real real _part : real,

i mgi nary_part : real

)
> To access the fields we use “dot” notation. Use in a declaration

X : conpl ex

i magi nary_part : real

X. real _part
X.imagi nary_part

Pointer Creating a Record

« A pointer is a reference to a variable or . We use the “new” operator to create a
record (or object in Java world).

record.

P : pointer to blob;
P[] (null pointer)

X : bl ob pointer

"X bl ob P := new blob;
JESSS
* InC, if Xis of type pointer to Y then *X is of
type Y i
. . . Application
Simple Linked List PP .
Sparse Polynomials
* Alinked list e 10 + 4 X2 + 20 x40 + 8 x86
> Group data together in a flexible, dynamic way.
> We'll describe several list ADTs later. P.—! 0| 86 Ex .
ponents in
L : node poi nter E Increasing order
E\‘ L L
(49 8 20 |

. f o int r
data : integer, coe ege ! next
next : node pointer next : poly pointer

))

record poly : (ox
exp : integer, P
record node : (coef

Identically Zero Polynomial

P[] null pointer

P

| o]
RN

Recursive Addition

Addition of Polynomials

Add(P, Q: poly pointer): poly pointer{
R : poly pointer

case {
P=null : R:=Q;
Q=null : R:=P;
P.exp < Qexp: R:=P;
R next := Add(P.next,Q;
P.exp > Qexp: R:=Q;
R next := Add(P, Q next);
P.exp = Qexp: R:=P;
R coef := P.coef + Q coef ;
R next := Add(P.next, Q next);
}
return R

11

10 + 4 x2 + 20 x40 + 8 x86

PLo——0| [2] 40 6
0 4] 20 |8
LI L

7 x+ 10 x2 - 8 x86

Qle——1| [2| leg
7/ 1o |8
11

Example
,,,,,, Add
PLO—o| [2| 40 s
10 4] 20 [8]
Qle——1| [2| leg
7] o |8

Example (first call) The Recursive Call

,,,,,, Al A
- o . r=Es/s======"=
Plo—-0| [2] a0 g Pl4—o| 1[2] 40 [gg !
< 10 [4] [0 [g] B/ 10 I[a] 20 8],
R[] R I
T T T ' T | — |
[———=—= : - — — i
Ql+—f{1] [2] 86 ! Q1| [2]| |86 ;
7, 10 |8 \ - 7, 10 |8 !
- :_ _____ T__:__T_____:
During the Recursive Call After the Recursive Call
,,,,,, Al A
o] ![2| lao fes ! o] [2] [0 g
B/ 10 ![14 [20 [o] ! B/ 10 14 [0 [o]
R ' ! Represen R
P i - .;/7 — E rFfatErn vallzes greeermaseserennasenss i ,,,,, /— — ‘
: Return —{ 1 7 % : | Return —{ 1 7 % |
| value 7 E E ! value ? E E
i {4 |] L

15

The final picture

unneeded
0| |2| |40 [les|
B/Q&&
R

garbage

17

Unneeded nodes to Garbage

Notes on Addition

How would you force the unneeded
node to be garbage in the code on slide
117?

Suggestions?

19

Addition is destructive, that is, the
original polynomials are gone after the
operation.

We don’t salvage “garbage” nodes.
Let’s talk about this.

We don’t consider the case when the
coefficients cancel. Let’s talk about this.

18

Memory Management —
Global Allocator

Global Allocator’s store — always get
and return blocks to global allocator —
an area in the memory from which we
can dynamically allocate memory.

- The user (the program) must ‘free’ the
memory when done.

20

Memory Management —
Garbage Collection

Solution for Polyn. Addition

» Garbage collection — run time system
recovers inaccessible blocks from time-
to-time. Used in Lisp, Smalltalk, Java.
+ No need to return blocks to an allocator.

- Care must be taken to make unneeded
blocks inaccessible.

- When garbage collection kicks in there
may be undesirable response time.

21

Use of
Global Allocator

P.exp = Qexp: R:=P;
R coef := P.coef + Q coef ;
if Rcoef =0 then
R : = Add(P. next, Q next);

/1l The terns with coef = 0 have been renoved fromthe
/Il result

el se
R next := Add(P.next, Q next);

22

List ADT

P.exp = Qexp: R:=P;

R coef := P.coef + Q coef ;

if Rcoef =0 then
R := Add(P. next, Q next);
Free(P); Free(Q;

el se
R next := Add(P.next, Q next);
Free(Q;

23

e What is a List?
> Ordered sequence of elements A, A,, ...,
AN
* Elements may be of arbitrary type, but
all are of the same type

« Common List operations are:

> Insert, Find, Delete, ISEmpty, IsLast,
FindPrevious, First, Kth, Last, Print, etc.

24

Simple Examples of List Use

* Polynomials
> 25 + 4x2 + 75x85

» Unbounded Integers

> 4576809099383658390187457649494578

e Text
> “This is an example of text”

Zero

25

Unbounded Integers Base 10

null !

null ’

27

o 4572 X : node pointer
108 102 10! 100 sign
nutl— [af— [sh— 70— |2 [1]
« 348 Y : node pointer
102 10t 100 sign
null - [3) [al—t [8)—p [1]

26

List Implementations

» Two types of implementation:
> Array-Based
> Pointer-Based

28

List: Array Implementation

» Basic Idea:
> Pre-allocate a big array of size MAX_SIZE
> Keep track of current size using a variable count
> Shift elements when you have to insert or delete

List: Array Implementation

Insert Z in 3rd position

0 1 2 3 ... | count-1 MAX_SIZE-1

A TA A TA T T A

29

Array List Insert Running Time

* Running time for a list with N elements?

* On average, must move half the elements to
make room — assuming insertions at
positions are equally likely

» Worst case is insert at position 0. Must move
all N items one position before the insert

e This is O(N) running time. Probably too slow

* On the other hand — we can access the kth
item in O(1).

31

&
0 1 2 3 4 MAX_SIZE-1
A B C E

o4
0 1 2 3 4 | 5| 6 MAX_SIZE-1
A B Z C E|F

30

List: Pointer Implementation

» Basic Idea:
> Allocate little blocks of memory (nodes) as

elements are added to the list

> Keep track of list by linking the nodes together
> Change links when you want to insert or delete

L

e

node

node

— | Value

Next

L —

Value

Next
o—1— NULL

32

Pointer-based Insert (after p) Insertion After

InsertAfter(p : node pointer, v : value_type): {
X : node pointer;

node q X = new node;
node .
Value| Next x.value := v;

- 1- % — .| value| Next X.next := p.next:
® p.next := x;

P NULL
Value | Next
o .
Y Note: cannot swap two last lines (why?)
Insert the value v after P
33 34
Linked List with Header Node Pointer Implementation Issues
L' * Whenever you break a list, your code should fix
the list up as soon as possible
\headef node first actual list node > Draw pictures of the list to visualize what needs to
i\cﬁl:ree Ne.xt »| Value| Next be done_) .
0——1 » Pay special attention to boundary conditions:
> Empty list
NULL :) : : ,
> Single item — same item is both first and last
Advantage: “insert after” and “delete after” can be done > Two items — first, last, but no middle items

at the beginning of the list. > Three or more items — first, last, and middle items

35 36

Pointer List Insert Running
Time

Running time for a list with N elements?
Insert takes constant time (O(1))

Does not depend on list size

Compare to array based list which is O(N)

37

Delete After

Linked List Delete

Del eteAfter(p : node pointer): {
tenp : node pointer;
tenp = p.next,;
p. next = tenp.next; //p.next.next
free(tenp);

Note: p points to the node that comes before the
deleted node!

temp — the node to be removed.
39

L
?
\node node
Value N%Xt »| Value| Next
—]
/ NULL
Q
To delete the node pointed to by Q,
need a pointer to the previous node;
See book for findPrevious method
38
Linked List Delete
L
?

node
Value| Next

Sl

node
»| Value| Next
@
/ ">
/
temp

40

Doubly Linked Lists Double Link Pros and Cons

« findPrevious (and hence Delete) is slow [O(N)] . Advantage

2§8§use we cannot go directly to previous > Delete (not DeleteAfter) and FindPrev are faster
 Solution: Keep a "previous" pointer at each * Disadvantages:

node > More space used up (double the number of

pointers at each node)
head rev oy ey > More book-keeping for updating the two pointers
E_.L |p. | ._|_,|* pql [|p. (o] at each node (pretty negligible overhead)
1

41 42

Implementing Pointers in Arrays
— “Cursor Implementation”
Reverse(t : node pointer): node pointer {

rev : node pointer: This is needed in languages like
tenp: node pointer; _rev Fortran, Basic, and assembly language

et e EQ Easiest when number of records is
temp = t.next; T 1T known ahead of time.

Reverse a linked list

Loext S e f f « Each record field of a basic type is
t = tenp: t temp associated with an array.
} ° - - - - -
leturn (rev): |rev: the ‘already reversed part. A pointer field is an unsigned integer

indicating an array index.

Why do we need temp?

43 a4

ldea

Pointer World

n nodes
data next

1]

data : basic type
next : node pointer

Nonpointer World
D N

e nullis 0

|
|

allocation

Example of Use

* D[] : basic type array
* N[] : integer array
* Pointer is an integer

* p.data is D[p]
* p.next is N[p]
* Free list needed for node

45

B[—{c[= nul

Lg
a]
n=28
L=4 D N
Free-?l— 3]
2[c| [o]
3 | o]
4la| [s]
5[| 8]
6/b| [2]
70] [5]
8l | 1]

InsertFront (L :

}

integer, x :

q : integer;

if not(Free = 0) then q
el se return “overflow’;

Free := N Free];
Digl :=x

Nlql := L
L:=aq;

basic type) {

:= Free

a7

Initialization
Free=n D N D N null
1 L] [o] 1 [
2 || [1] 2 ||
3] [2] 3 ||
4 | | [3] means 4 | |
5 || [4] — 5 ||
n L] pt n L

Free

46

Try DeleteFront

» Define the cursor implementation of
DeleteFront which removes the first
member of the list when there is one.
> Remember to add garbage to free list.

Del et eFront (L :
???

}

integer) {

48

DeleteFront Solution

Del eteFront (L : integer) {
g : integer;

if L =0 then return “underfl ow

el se {

L
N

=

L];
Fr ee,
q;

Free :

49

