
Welcome to

CSE 326
Data Structures

2

Staff

• Instructor
› Tami Tamir

tami@cs.washington.edu
office hours: Friday 11:30-12:30 or by appointment

• TA’s
› Matt Cary (cary@cs.washington.edu)
› Xu Miao (xm@cs.washington.edu)

See web-page for office hours.

3

Web Page

• All info is on the web page for CSE 326
› http://www.cs.washington.edu/326

› also known as
• http://www.cs.washington.edu/education/courses/326/04wi

4

CSE 326 E-mail List

• Subscribe by going to the class web
page.

• E-mail list is used for posting
announcements by instructor and TAs.

• It is your responsibility to subscribe. It
might turn out to be very helpful for
assignments hints, corrections etc.

5

Textbook

• Data Structures and Algorithm Analysis in
Java (or in C++), by Weiss

• See Web page for errata and source code

6

Grading

• Dry assignments 25% - submit in singles

• Wet assignments (programming projects)
25% - can submit in pairs.

• Midterm 20%
› Friday, Feb 6, 2004

• Final 30%
› Group I : 8:30-10:20 a.m. Thursday, Mar. 18, 2004
› Group II: 2:30-4:20 p.m. Tuesday, Mar. 16, 2004

7

Class Overview

• Introduction to many of the basic data structures
used in computer software
› Understand the data structures
› Analyze the algorithms that use them
› Know when to apply them

• Practice design and analysis of data structures.
• Practice using these data structures by writing

programs.

8

Goal

• You will understand
› what the tools are for storing and

processing common data types
› which tools are appropriate for which need

• So that you will be able to
› make good design choices as a developer,

project manager, or system customer

9

Course Topics

• Introduction to Algorithm Analysis
• Lists, Stacks, Queues
• Search Algorithms and Trees
• Hashing and Heaps
• Sorting
• Disjoint Sets
• Graph Algorithms

10

Reading

• Chapters 1 and 2, Data Structures and
Algorithm Analysis in Java, by Weiss
› Most of Chapter 2 will be seen in class next

week.

11

Data Structures: What?

• Need to organize program data according to
problem being solved

• Abstract Data Type (ADT) - A data object and a
set of operations for manipulating it
› List ADT with operations i nser t and del et e

› Stack ADT with operations push and pop

• Note similarity to Java classes
› private data structure and public methods

12

Data Structures: Why?

• Program design depends crucially on how
data is structured for use by the program
› Implementation of some operations may become

easier or harder
› Speed of program may dramatically decrease or

increase
› Memory used may increase or decrease
› Debugging may be become easier or harder

13

Terminology
• Abstract Data Type (ADT)

› Mathematical description of an object with set of
operations on the object. Useful building block.

• Algorithm
› A high level, language independent, description of

a step-by-step process

• Data structure
› A specific family of algorithms for implementing an

abstract data type.

• Implementation of data structure
› A specific implementation in a specific language

14

Algorithm Analysis: Why?

• Correctness:
› Does the algorithm do what is intended.

• Performance:
› What is the running time of the algorithm.
› How much storage does it consume.

• Different algorithms may correctly solve
a given task
› Which should I use?

15

Evaluating an algorithm

Mike: My algorithm can sort 106 numbers in 3 seconds.
Bill: My algorithm can sort 106 numbers in 5 seconds.

Mike: I’ve just tested it on my new Pentium IV processor.
Bill: I remember my result from my undergraduate studies

(1985).

Mike: My input is a random permutation of 1..106.
Bill: My input is the sorted output, so I only need to verify that

it is sorted.

16

Program Evaluation / Complexity

* A complexity function is a function T: N à N.
T(n) is the number of operations the algorithm does
on an input of size n.

* We can measure three different things.
• Worst-case complexity
• Best-case complexity
• Average-case complexity

• Processing time is surely a bad measure!!!
• We need a ‘stable’ measure, independent of the

implementation.

17

The RAM Model of
Computation

• Each simple operation takes 1 time step.
• Loops and subroutines are not simple operations.
• Each memory access takes one time step, and there is

no shortage of memory.
For a given problem instance:
• Running time of an algorithm = # RAM steps.
• Space used by an algorithm = # RAM memory cells

useful abstraction � allows us to analyze algorithms in a
machine independent fashion.

18

Big O Notation

• Goal :
› A stable measurement independent of the machine.

• Way:
› ignore constant factors.

• f(n) = O(g(n)) if c⋅g(n) is upper bound on f(n)

⇔ There exist c, N, s.t. for any n ≥ N, f(n) ≤ c⋅g(n)

Ignore
constants

Consider
large inputs
(asymptotic
behavior)

19

Big O Notation

n+120
5n2

��������� ≥ ��	
 ����
�
����≤ ���

� �
������� 	��� 20

Ω, Θ Notation

• f(n) = Ω(g(n)) if c⋅g(n) is lower bound on f(n)

⇔ There exist c, N, s.t. for any n ≥ N, f(n) ≥
c⋅g(n)

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n))
⇔ There exist c1, c2, N, s.t. for n ≥ N,

c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n)

21

Ω, Θ Notation

Examples:

4x2+100 = O(x2) 4x2+100 ≠ Θ(x3)
4x2+100 = Ω(x2) 4x2+100 = O(x3)
4x2+100 = Θ(x2) 4x2+100 = Ω(x)
4x2 -100 =O(x2) 4x2 + xlogx =O(x2)
123400 = O(1)

22

Growth Rates

• Even by ignoring constant factors, we can get
an excellent idea of whether a given
algorithm will be able to run in a reasonable
amount of time on a problem of a given size.

• The “big O” notation and worst-case analysis
are tools that greatly simplify our ability to
compare the efficiency of algorithms.

23

Practical Complexity

0

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

24

Practical Complexity

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

25

Practical Complexity

0

1000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

26

Practical Complexity

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

27

Big O Fact

• A polynomial of degree k is O(nk)
• Proof:

› Suppose f(n) = bknk + bk-1nk-1 + … + b1n + b0

• Let a = maxi {bi}

› f(n) ≤ ank + ank-1 + … + an + a
≤ kank ≤ cnk (for c=ka).

28

Iterative Algorithm for Sum

• Find the sum of the first numintegers
stored in an array v .

sum(v[] : i nt eger ar r ay, num: i nt eger) : i nt eger {

t emp_sum: i nt eger ;

t emp_sum : = 0;

f or i : = 0 t o num – 1 do

t emp_sum : = v[i] + t emp_sum;
r et ur n t emp_sum;

}

Note the use of pseudocode

29

Programming via Recursion

• Write a recursive function to find the
sum of the first numintegers stored in
array v .

sum (v[] : i nt eger ar r ay, num: i nt eger) : i nt eger {

i f (num = 0) t hen

r et ur n 0

el se

r et ur n (v[num- 1] + sum(v, num- 1)) ;

}

30

Pseudocode

• In the lectures algorithms will be presented in
pseudocode.
› This is very common in the computer science

literature
› Pseudocode is usually easily translated to real

code.
› This is programming language independent

• Pseudocode should also be used for
homework (dry ones)

31

Review: Induction

• Suppose
› S(k) is true for fixed constant k

• Often k = 0

› S(n) implies S(n+1) for all n >= k

• Then S(n) is true for all n >= k

32

Proof By Induction

• Claim:S(n) is true for all n >= k
• Base:

› Show S(n) is true for n = k

• Inductive hypothesis:
› Assume S(n) is true for an arbitrary n

• Step:
› Show that S(n) is then true for n+1

33

Induction Example:
Geometric Closed Form

• Prove a0 + a1 + … + an = (an+1 - 1)/(a - 1) for
all a ≠ 1
› Basis: 1. show that a0 = (a0+1 - 1)/(a - 1) :

a0 = 1 = (a1 - 1)/(a - 1). 2. Show true for n=2.

› Inductive hypothesis:
• Assume a0 + a1 + … + an = (an+1 - 1)/(a - 1)

› Step (show true for n+1):
a0 + a1 + … + an+1 = a0 + a1 + … + an + an+1

= (an+1 - 1)/(a - 1) + an+1 = (an+1+1 - 1)/(a - 1)

34

Program Correctness by
Induction

• Basis Step: sum(v,0) = 0. üüüü
• Inductive Hypothesis (n=k): Assume

sum(v,k) correctly returns sum of first k
elements of v, i.e. v[0] +v[1] +…+v[k- 1]

• Inductive Step (n=k+1): sum(v,n)
returns v[k] +sum(v, k) which is the sum
of first k+1 elements of v. üüüü

35

Algorithms vs Programs

• Proving correctness of an algorithm is very
important
› a well designed algorithm is guaranteed to work

correctly and its performance can be estimated

• Proving correctness of a program (an
implementation) is fraught with weird bugs
› Abstract Data Types are a way to bridge the gap

between mathematical algorithms and programs

