
Welcome to

CSE 326
Data Structures
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Staff

• Instructor
› Tami Tamir 

tami@cs.washington.edu
office hours: Friday 11:30-12:30 or by appointment

• TA’s
› Matt Cary (cary@cs.washington.edu) 
› Xu Miao (xm@cs.washington.edu) 

See web-page for office hours.
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Web Page

• All info is on the web page for CSE 326
› http://www.cs.washington.edu/326

› also known as
• http://www.cs.washington.edu/education/courses/326/04wi
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CSE 326 E-mail List

• Subscribe by going to the class web 
page.

• E-mail list is used for posting 
announcements by instructor and TAs.

• It is your responsibility to subscribe. It 
might turn out to be very helpful for 
assignments hints, corrections etc.
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Textbook

• Data Structures and Algorithm Analysis in 
Java (or in C++), by Weiss

• See Web page for errata and source code
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Grading

• Dry assignments 25% - submit in singles

• Wet assignments (programming projects) 
25% - can submit in pairs.

• Midterm 20%
› Friday, Feb 6, 2004

• Final 30%
› Group I : 8:30-10:20 a.m. Thursday, Mar. 18, 2004 
› Group II: 2:30-4:20 p.m. Tuesday, Mar. 16, 2004 

7

Class Overview

• Introduction to many of the basic data structures 
used in computer software
› Understand the data structures
› Analyze the algorithms that use them
› Know when to apply them

• Practice design and analysis of data structures.
• Practice using these data structures by writing 

programs.
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Goal

• You will understand
› what the tools are for storing and 

processing common data types
› which tools are appropriate for which need

• So that you will be able to
› make good design choices as a developer, 

project manager, or system customer
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Course Topics

• Introduction to Algorithm Analysis
• Lists, Stacks, Queues
• Search Algorithms and Trees
• Hashing and Heaps
• Sorting
• Disjoint Sets
• Graph Algorithms

10

Reading

• Chapters 1 and 2, Data Structures and 
Algorithm Analysis in Java, by Weiss
› Most of Chapter 2 will be seen in class next 

week. 
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Data Structures: What?

• Need to organize program data according to 
problem being solved

• Abstract Data Type (ADT) - A data object and a 
set of operations for manipulating it
› List ADT with operations i nser t and del et e

› Stack ADT with operations push and pop

• Note similarity to Java classes
› private data structure and public methods
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Data Structures: Why?

• Program design depends crucially on how 
data is structured for use by the program
› Implementation of some operations may become 

easier or harder
› Speed of program may dramatically decrease or 

increase
› Memory used may increase or decrease
› Debugging may be become easier or harder
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Terminology
• Abstract Data Type (ADT)

› Mathematical description of an object with set of 
operations on the object.  Useful building block.

• Algorithm
› A high level, language independent, description of 

a step-by-step process

• Data structure
› A specific family of algorithms for implementing an 

abstract data type.

• Implementation of data structure
› A specific implementation in a specific language
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Algorithm Analysis: Why?

• Correctness:
› Does the algorithm do what is intended.

• Performance:
› What is the running time of the algorithm.
› How much storage does it consume.

• Different algorithms may correctly solve 
a given task
› Which should I use?
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Evaluating an algorithm

Mike: My algorithm can sort 106 numbers in 3 seconds.
Bill: My algorithm can sort 106 numbers in 5 seconds.

Mike: I’ve just tested it on my new Pentium IV processor.
Bill: I remember my result from my undergraduate studies 

(1985).

Mike: My input is a random permutation of 1..106.
Bill: My input is the sorted output, so I only need to verify that 

it is sorted.
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Program Evaluation / Complexity

* A complexity function is a function T: N à N. 
T(n) is the number of operations the algorithm does 
on an input of size n.

* We can measure three different things.
• Worst-case complexity
• Best-case complexity
• Average-case complexity

• Processing time is surely a bad measure!!!
• We need a ‘stable’ measure, independent of the 

implementation.
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The RAM Model of 
Computation

• Each simple operation takes 1 time step.
• Loops and subroutines are not simple operations.
• Each memory access takes one time step, and there is 

no shortage of memory.
For a given problem instance:
• Running time of an algorithm = # RAM steps. 
• Space used by an algorithm = # RAM memory cells

useful abstraction � allows us to analyze algorithms in a 
machine independent fashion.
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Big O Notation

• Goal :
› A stable measurement independent of the machine. 

• Way:
› ignore constant factors.

• f(n) = O(g(n)) if c⋅g(n) is upper bound on f(n)

⇔ There exist c, N, s.t. for any n ≥ N,   f(n) ≤ c⋅g(n)

Ignore 
constants

Consider 
large inputs 
(asymptotic 
behavior)
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Big O Notation
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Ω, Θ Notation

• f(n) = Ω(g(n)) if c⋅g(n) is lower bound on f(n)

⇔ There exist c, N, s.t. for any n ≥ N,   f(n) ≥
c⋅g(n)

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n))
⇔ There exist c1, c2, N, s.t. for n ≥ N,     

c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n)
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Ω, Θ Notation

Examples:

4x2+100 = O(x2) 4x2+100 ≠ Θ(x3) 
4x2+100 = Ω(x2) 4x2+100 = O(x3)
4x2+100 = Θ(x2) 4x2+100 = Ω(x)         
4x2 -100 =O(x2)           4x2 + xlogx =O(x2)
123400 = O(1)
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Growth Rates

• Even by ignoring constant factors, we can get 
an excellent idea of whether a given 
algorithm will be able to run in a reasonable 
amount of time on a problem of a given size.

• The “big O” notation and worst-case analysis 
are tools that greatly simplify our ability to 
compare the efficiency of algorithms.
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Practical Complexity
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Practical Complexity
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Practical Complexity
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Practical Complexity
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Big O Fact

• A polynomial of degree k is O(nk)
• Proof:

› Suppose f(n) = bknk + bk-1nk-1 + … + b1n + b0

• Let a = maxi {bi}

› f(n) ≤ ank + ank-1 + … + an + a
≤ kank ≤ cnk  (for c=ka).
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Iterative Algorithm for Sum

• Find the sum of the first numintegers 
stored in an array v .  

sum( v[  ] :  i nt eger  ar r ay,  num:  i nt eger ) :  i nt eger {

t emp_sum:  i nt eger  ;

t emp_sum : = 0;

f or  i  : = 0 t o num – 1 do 

t emp_sum : = v[ i ]  + t emp_sum;
r et ur n t emp_sum;

}

Note the use of pseudocode
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Programming via Recursion

• Write a recursive function to find the 
sum of the first numintegers stored in 
array v .

sum ( v[  ] :  i nt eger  ar r ay,  num:  i nt eger ) :  i nt eger  {

i f  ( num = 0)  t hen 

r et ur n 0

el se

r et ur n ( v[ num- 1]  + sum( v, num- 1) ) ;

}
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Pseudocode

• In the lectures algorithms will be presented in 
pseudocode.
› This is very common in the computer science 

literature
› Pseudocode is usually easily translated to real 

code.
› This is programming language independent

• Pseudocode should also be used for 
homework (dry ones)
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Review: Induction

• Suppose
› S(k) is true for fixed constant k

• Often k = 0

› S(n) implies S(n+1) for all n >= k

• Then S(n) is true for all n >= k
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Proof By Induction

• Claim:S(n) is true for all n >= k
• Base:

› Show S(n) is true for n = k

• Inductive hypothesis:
› Assume S(n) is true for an arbitrary n

• Step:
› Show that S(n) is then true for n+1
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Induction Example:
Geometric Closed Form

• Prove a0 + a1 + … + an = (an+1 - 1)/(a - 1) for 
all a ≠ 1
› Basis: 1. show that a0 = (a0+1 - 1)/(a - 1) :

a0 = 1 = (a1 - 1)/(a - 1). 2. Show true for n=2.

› Inductive hypothesis:
• Assume a0 + a1 + … + an = (an+1 - 1)/(a - 1)

› Step (show true for n+1):
a0 + a1 + … + an+1 = a0 + a1 + … + an + an+1

= (an+1 - 1)/(a - 1) + an+1 = (an+1+1 - 1)/(a - 1)
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Program Correctness by 
Induction

• Basis Step: sum(v,0) = 0.  üüüü
• Inductive Hypothesis (n=k): Assume 

sum(v,k) correctly returns sum of first k 
elements of v, i.e. v[ 0] +v[ 1] +…+v[ k- 1]

• Inductive Step (n=k+1): sum(v,n) 
returns v[ k] +sum( v, k) which is the sum 
of first k+1 elements of v. üüüü
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Algorithms vs Programs

• Proving correctness of an algorithm is very 
important
› a well designed algorithm is guaranteed to work 

correctly and its performance can be estimated

• Proving correctness of a program (an 
implementation) is fraught with weird bugs
› Abstract Data Types are a way to bridge the gap 

between mathematical algorithms and programs


