Applied Algorithm Scenario

DFS, BFS,
Shortest Path Problems
Real world problem
CSE 326 :
Data Structures Abstractly model the problem
Unit 12 l
Find abstract algorithm
Reading: Sections 9.3, 9.6, 10.3.4]
Adapt to original problem

Broadcasting in a Network Spanning Tree in a Graph

- Network of Routers

- Organize the routers to efficiently
broadcast messages to each other.

. —>
Incoming message
* Duplicate and send
to some neighbors.
« Eventually all routers
get the message Vertex = router Spanning tree
Edge = link between routers - Connects all the vertices
- No cycles

Goal: Minimize the number of messages.

Spanning Tree Problem Depth First Search Algorithm

* Input: An undirected graph G = (V,E). * Recursive marking algorithm

G is connected. * Tnitially every vertex is unmarked
* Output: T contained in E such that

- (V,T) is a connected graph DFS(i: vertex)

mark i;
for each j adjacent to i do
if j is unmarked then DFS(j)
end{DFS}

- (V,T) has no cycles

Example of Depth First Search Example Step 2
DFS(1) DFS(1)
DFS(2)

Example Step 3

Example Step 4

DFS(1) DFS(1)
DFS(2) DFS(2)
DFS(7) DFES(7)

DFS(5)

Example Step 5 Example Step 6

DFS(1) DFS(1)
DFS(2) DFS(2)
DFS(7) DES(7)
DFS(5) DFS(5)
DFS(4) DFS(4)

11

DFS(3)

12

Example Step 7

Note that the edges traversed in the depth first

search form a spanning tree.

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
DFS(3)
DFS(6)

13

Spanning Tree Algorithm

Main

T = empty set;

The addition to DFS-"|end{ST}

ST(i: vertex)
mark i;

ST(1): for each j adjacent fo i do
end{Main} if j is unmarked then
Add {i,j} to T;
STQ):

14

Applied Algorithm Scenario

Real world problem

Wrong problem

l

Abstractly model the problem

Wrong model

l

Incorrect algorithm

Find abstract algorithm

poor performance

}

Adapt to original problem

AN
-~

Evaluate

15

Evaluation Step Expanded

Algorithm Correct?

| yes

Choose Data Structure

Performance?

no - New algorithm
- New model
- New problem

unsatisfactory

satisfactory

Implement

- New data structure

- New algorithm
- New model

16

Correctness of ST Algorithm

* There are no cyclesin T
- This is an invariant of the algorithm.

- Each edge added to T goes from a vertex in T
to a vertex not in T.

+ If G is connected then eventually every
vertex is marked.

11/.\'\. unmarked

17

Correctness (cont.)

- If G is connected then so is (V,T)

18

Data Structure Step

: no - New algorithm
Algorithm Correct? " - New model
l yes - New problem

Choose Data Structure

unsatisfactory
Performance?
satisfactory - New data structure
- New algorithm

Implement - New model

19

Data Structure Choice

- Adjacency lists

- Good for sparse graphs

- Supports depth first search
- Adjacency matrix

- Good for dense graphs

- Supports depth first search

20

Spanning Tree with Adjacency Lists

Main
G is array of adjacency lists;
M[i]:= 0 forall i;
T is empty:
Spanning_Tree(1);
end{Main}

M is the marking array
(entry for each vertex).

Node of linked list:
vertex| |] next

ST(i: vertex)
M[i]:=1;
v:=GJ[il;
while (v # null)
J = vvertex;
if (M[j]=0) then
add {i,j} to T;
ST():
v = v.next;
end{ST}

21

Performance Step

no - New algorithm
- New model
yes - New problem

—

Performance?

unsatisfactory

satisfactory

Implement

- New data structure
- New algorithm
- New model

22

Performance of ST Algorithm

* nvertices and m edges

+ Connected graph (m = n-1)

+ Space complexity O(m)

+ Time complexity O(m) - for each edge we
perform O(1) operations in each of the two

endpoints.

23

Other Uses of Depth First Search

directed graphs

graphs

* Maze solving

* Popularized by Hopcroft and Tarjan 1973
+ Connected components
+ Strongly connected components in

« Topological sorting of a acyclic directed

24

ST using Breadth First Search 1

- Uses a queue to order search

Queue =1

25

Breadth First Search 2

Queue =2,6,5

26

Breadth First Search 3

Queue =6,5,7,3

27

Breadth First Search 4

Queue =5,7,3

28

Breadth First Search 5

Queue =7,3,4

29

Breadth First Search 6

30

Breadth First Search 7

Queue =4

31

Breadth First Search 8

Queue =

32

Spanning Tree using Breadth First
Search (BFS)

Initialize T to be empty:
Initialize Q to be empty;
Enqueue(1,Q) and mark 1;
while (Q is not empty) do
i := Dequeue(Q);
for each j adjacent to i do
if j is not marked then
add {i,j} to T;
mark j;
Enqueue(j,Q);

33

Depth First vs Breadth First

* Depth First
- Stack or recursion
- Many applications
* Breadth First
- Queue (recursion no help)

- Can be used to find shortest paths from
the start vertex

- Both are O(|E|)

Shortest-path Algorithms

+ Scenario: One router creates messages (source).
Each message needs to reach other routers (one
or more) along the shortest possible path.

+ Abstraction: given a vertex s, find the shortest
path from s to any other vertex of G.

* Other shortest path problems:

- Different edges have different lengths (delay,
cost, etc.)

- All-pair shortest path problem: no specific
source.

35

Using BFS for Shortest-path

Given a vertex s, find the shortest path from s
to any other vertex of G.

A 'centralized’ version of BFS:
1. Label vertex s with O.
2. i<0

3. Find all unlabeled vertices adjacent to at least
one vertex labeled i. If none are found, stop.

4. Label all the vertices found in (3) with i+ 1.
5. i« i+1landgo to(3).

36

BFS for Shortest Path (i=0)

Vertices whose distance from s is O are labeled.

37

BFS for Shortest Path (i=1)

Vertices whose distance from s is 1 are labeled.

38

BFS for Shortest Path (i=2)

Vertices whose distance from s is 2 are labeled.

39

BFS for Shortest Path (i=3)

Vertices whose distance from s is 3 are labeled.

In the next iteration we find out that the whole graph

is labeled and we stop. o

The BFS Tree

Theorem: Each vertex is
labeled by it its length from s.

Proof: By induction on the label.

For any v#s, let p(v) be the
vertex that 'discovered' v in BFS.

Then T={(p(v),v)} is a directed spanning tree rooted in
s, and for each vertex v, the path froms tovin Tisa
shortest path from s fo v in 6.

Note: the ‘centralized’ version is for simplification only.

When implemented, we need the queue as before.
41

Single-Source Shortest Paths
(Dijkstra's algorithm)

Using BFS, we solve the problem of finding
shortest path from s fo any vertex v.

+ What if edges have associated costs or distances?

(BFS assumes edge costs are all 1.)

*+ Assume each edge (u,v) has non-negative weight

c(u,v).

+ A weight of a path = fotal weights of all edges on

path.

+ Problem: Find, for each vertex v, a shortest

(minimum weight) path from s o v.

42

Idea of Dijkstra's Algorithm:

* Maintain:
— A[0..n-1] where A(v) is the cost of best path from
s to v found so far, and
- T, set of vertices v for which A(v) is not yet
known to be optimal.
* TInitially:
— A(s) = 0; A(v) = © for all v other than s.
-T=V.

* Ineach step:
- remove that vin T with minimum A(v)

- update those w in T s.t. (v,w) in E and
Aw) > A(V) + c(v.w).

=

w ™

4.

o1

Dijkstra's Algorithm

Assumption: c(u,v) = o if (u,v) not in E.

. A(S) <« 0 and for all v #s,

A(V) « oo
T « W
Let u be a vertex in T for which A(u)
i's mnimm
For every edge, if v/T and

A(v) > A(u) + c(u,v) then

AV) <« A(u) + c(u,v).
T=T-{u}, if Tis not enpty go to
step 3.

Dijkstra's Algorithm - Example

Dijkstra's Algorithm - Example

init u=s u=a
s| O o*| O*
a| o 3 3*
b| o 4 4
c| o 00 6
d o 00 00
e| o 00 9
f| o 8 8
In class exercise: complete the execution.

46

* non-T vertices.

Why is this Algorithm Correct?

+ Theorem: At the termination of the algorithm,
A(v) is the length of the shortest path from s to v
for each vertex v of G.

* Proof: by induction on |V-T|.
Inductive hypothesis: Let |V-T|=k.
-0Ov in V-T, A(v) is the length of the
shortest path from s fo v.

-the vertices in V-T are the k closest
vertices to s.

-0Ov in T, A(v) is the length of the
shortest path from s to v that only
goes through vertices in V-T.

Why is this Algorithm Correct?

- Base case: |V-T|=1, T=V-{s}.

- for every v in V-T, A(v) is the length of
shortest path from s to v.

v' we init A(s) =0.

- the vertices in V-T are the k closest vertices
to s.

v' V-T={s}. sis surely the closest to s.

- for every vin T, A(v) is the length of
shortest path from s to v that only goes
through vertices in V-T.

v’ At this stage, A(v) =« forall vin V-T.

48

The A values of vertices in V-T are correct
and for each such v, the shortest path from s
to v only goes through vertices in V-T

- Induction Step: Suppose true for first k steps.
The SP to the (k+1)s* closest vertex, say w,
can go through only vertices in V-T, otherwise,
there would be a closer vertex. Therefore,
when selecting the min, we select the (k+1)st
closest vertex to s.

Say w is added.

New A value for a vertex x is min of old A

value and A(w) + c(w,x)

49

Dijktra's Algorithm - Run Time Analysis

Implementation 1:
- Adjacency lists.
- Anarray for the A values.
Complexity:
In each iteration:
1. Finding a vertex u in T with minimal A
In the whole execution: n+(n-1)+(n-2)+..+1 = O(n?)
2. Updating the A-values of u's neighbors:
In each iteration we check degree(u) values.
The total sum of the degrees in2m O(m)
All together: O(m+n?)= O(n?) (remember, msn(n-1))

50

Dijktra’s Algorithm - Run Time Analysis

» Implementation 2: data structure: priority queue
+ Stores set S (in our case, this is T) such that there is
a linear order on key values (in our case the key is the
A value).
* Supports operations:
- Insert(x) - insert element with key value x into set.
- FindMin() - return value of smallest element in set.
- DeleteMin() - delete smallest element in set.
- Find(x)

51

Priority-Queue Implementations

* Priority-Queue can be implemented
such that each of these operations takes
O(log n) time for sets of size n.

Running time of Dijkstra's algorithm:

We need to consider insertions, delete
Mins, finds, modifying A values.

52

Running Time of Dijkstra's
Algorithm:
n insertions: O(nlog n) time
n deleteMins: O(n log n) time
m finds: O(m log n) time
m A-value modifications: O(m log n) time

Running time: O((n + m) log n))

+ The O(n?) is better for dense graphs

53

Single-Source Shortest Paths
(Bellman-Ford's algorithm)

+ each edge (u,v) has a weight c(u,v).
*+ ¢(u,v) might be negative, but there are no negative
cycles.

1. A(s) — Oand for every vzs, A(V) — .

2. As long as there is an edge such that A(v) > A(u) +
c(e) replace A(v) by A(u) + c(e).

For our purposes « is not greater than « + 4, even if
kis negative.

* Running Example:

Bellman-Ford algorithm

* How do we implement this algorithm?

* Order the edges: e, e,, ..., e

*+ Perform step 2 by first checking e, thene,, etc.,

After the first such sweep, go through additional
sweeps, until an entire

e3,4
sweep produces M
el -3

no improvement. @

@ .

BF algorithm - correctness and run
time analysis

* Theorem: if a shortest path from s to v consists
of k edges, then by the end of the k™ sweep v will
have its final label.

* Proof: induction on k (not here).

- Since k is bounded by |V| (remember, no negative
cycles), step 2 is performed at most [E|0IV|
times.

+ Each comparison in step 2 can takes O(1) if the
graph is kept in an Adjacency Matrix (with the
weights) and an array with the A(v) values.

The time complexity of BF is O(|E|0V]).

56

All-pair Shortest Path

* Input: a directed graph G=(V,E) with
V={1, 2, ..., n}. The length of edge e
is denoted by c(e), and it may be
negative.

» Output: All-pair shortest path: for
any two vertices v,u in V, what is the
shortest path from v to u

- we will only be interested in the /ength
of that path.

57

All-pair Shortest Path

* We can solve this problem using
single-source shortest path
algorithms. For example, we can run
Bellman-Ford |V| times (one time for
each possible selection of the source
vertex s).

- Time comrlexu‘r
IVI*O(IVIIE=O(|VI?|EI)

- We will see a solution using Dynamic
Programming.

58

All-pair Shortest Path

Define
59,)= {c(e) if i (F - j,

o0 if there is no edge from ito j.

Let d(i,j) be the length of a shortest
path from i to j among all paths which
may pass through vertices 1,2,... A but
do not pass through vertices A+1,
k+2,...,N.

59

Floyd Algorithm (1962)

1. Init &°(i, j) as defined earlier
2.k ~ 1
3. For every 1</ j<ncompute
3K(i, §) — Min { 8<1(, j),
ok1(i, k) + d<I(k, j)}.
4. If k = n, stop. If not, increment A
and go to step 3.

60

Floyd Algorithm

(i, J) < Min {8, j),
§I(i, k) + 3I(k, j)}.

The shortest path from i to j which
may pass through vertices 1,2,... .k
but do not pass through vertices
kel k+2... n:

1. Might not pass through vertex k, or

2. Might pass through k, and then it is
composed by two already-computed
shortest paths.

@ 61

Floyd Algorithm
8(i, §) — Min {8(i, j),
&I, k) + o1(k, j)}.

Theorem: The value of (i, j) is the
shortest path fromi to j

Proof idea: By induction on k, the value
of &(i, j) is correct. In particular, for
&(i, j) we get the shortest path.

62

Floyd Algorithm

The value of (i, j) is meaningful only
if there are no negative cycles in G.
The existence of negative cycles is
detected by having (i, i) < O for
some i and k.

Each application of step 3 requires ##
operations, and step 3 is repeated »
times. Thus, the algorithm is of
complexity O(n3).

63

Shortest-path algorithms -

Summary
- Single source, no weights:
BFS - O(m)

- Single source, non-negative weights:
Dijkstra O((n + m) log n)) or O(n?)

- Single source, arbitrary weights:
Bellman-Ford: O(nm)

« All-pair shortest path, arbitrary
weights: Floyd: O(n3)

64

