Applied Algorithm Scenario

DFS, BFS,
Shortest Path Problems
Real world problem
CSE 326 :
Data Structures Abstractly model the problem
Unit 12 l
Find abstract algorithm
Reading: Sections 9.3, 9.6, 10.3.4 ]
Adapt to original problem

Broadcasting in a Network Spanning Tree in a Graph

- Network of Routers

- Organize the routers to efficiently
broadcast messages to each other.

. —>
Incoming message
* Duplicate and send
to some neighbors.
« Eventually all routers
get the message Vertex = router Spanning tree
Edge = link between routers - Connects all the vertices
- No cycles

Goal: Minimize the number of messages.




Spanning Tree Problem Depth First Search Algorithm

* Input: An undirected graph G = (V,E). * Recursive marking algorithm

G is connected. * Tnitially every vertex is unmarked
* Output: T contained in E such that

- (V,T) is a connected graph DFS(i: vertex)

mark i;
for each j adjacent to i do
if j is unmarked then DFS(j)
end{DFS}

- (V,T) has no cycles

Example of Depth First Search Example Step 2
DFS(1) DFS(1)
DFS(2)




Example Step 3

Example Step 4

DFS(1) DFS(1)
DFS(2) DFS(2)
DFS(7) DFES(7)

DFS(5)

Example Step 5 Example Step 6

DFS(1) DFS(1)
DFS(2) DFS(2)
DFS(7) DES(7)
DFS(5) DFS(5)
DFS(4) DFS(4)
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DFS(3)
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Example Step 7

Note that the edges traversed in the depth first

search form a spanning tree.

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
DFS(3)
DFS(6)
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Spanning Tree Algorithm

Main

T = empty set;

The addition to DFS-"|end{ST}

ST(i: vertex)
mark i;

ST(1): for each j adjacent fo i do
end{Main} if j is unmarked then
Add {i,j} to T;
STQ):
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Applied Algorithm Scenario

Real world problem

Wrong problem

l

Abstractly model the problem

Wrong model

l

Incorrect algorithm

Find abstract algorithm

poor performance

}

Adapt to original problem

AN
-~

Evaluate
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Evaluation Step Expanded

Algorithm Correct?

| yes

Choose Data Structure

Performance?

no - New algorithm
- New model
- New problem

unsatisfactory

satisfactory

Implement

- New data structure

- New algorithm
- New model
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Correctness of ST Algorithm

* There are no cyclesin T
- This is an invariant of the algorithm.

- Each edge added to T goes from a vertex in T
to a vertex not in T.

+ If G is connected then eventually every
vertex is marked.

11/.\'\. unmarked
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Correctness (cont.)

- If G is connected then so is (V,T)
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Data Structure Step

: no - New algorithm
Algorithm Correct? " - New model
l yes - New problem

Choose Data Structure

unsatisfactory
Performance?
satisfactory - New data structure
- New algorithm

Implement - New model
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Data Structure Choice

- Adjacency lists

- Good for sparse graphs

- Supports depth first search
- Adjacency matrix

- Good for dense graphs

- Supports depth first search
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Spanning Tree with Adjacency Lists

Main
G is array of adjacency lists;
M[i]:= 0 forall i;
T is empty:
Spanning_Tree(1);
end{Main}

M is the marking array
(entry for each vertex).

Node of linked list:
vertex| | ] next

ST(i: vertex)
M[i]:=1;
v:=GJ[il;
while (v # null)
J = vvertex;
if (M[j]=0) then
add {i,j} to T;
ST():
v = v.next;
end{ST}

21

Performance Step

no - New algorithm
- New model
yes - New problem

—

Performance?

unsatisfactory

satisfactory

Implement

- New data structure
- New algorithm
- New model
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Performance of ST Algorithm

* nvertices and m edges

+ Connected graph (m = n-1)

+ Space complexity O(m)

+ Time complexity O(m) - for each edge we
perform O(1) operations in each of the two

endpoints.

23

Other Uses of Depth First Search

directed graphs

graphs

* Maze solving

* Popularized by Hopcroft and Tarjan 1973
+ Connected components
+ Strongly connected components in

« Topological sorting of a acyclic directed
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ST using Breadth First Search 1

- Uses a queue to order search

Queue =1
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Breadth First Search 2

Queue =2,6,5
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Breadth First Search 3

Queue =6,5,7,3
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Breadth First Search 4

Queue =5,7,3

28




Breadth First Search 5

Queue =7,3,4
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Breadth First Search 6
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Breadth First Search 7

Queue =4
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Breadth First Search 8

Queue =
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Spanning Tree using Breadth First
Search (BFS)

Initialize T to be empty:
Initialize Q to be empty;
Enqueue(1,Q) and mark 1;
while (Q is not empty) do
i := Dequeue(Q);
for each j adjacent to i do
if j is not marked then
add {i,j} to T;
mark j;
Enqueue(j,Q);
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Depth First vs Breadth First

* Depth First
- Stack or recursion
- Many applications
* Breadth First
- Queue (recursion no help)

- Can be used to find shortest paths from
the start vertex

- Both are O(|E|)

Shortest-path Algorithms

+ Scenario: One router creates messages (source).
Each message needs to reach other routers (one
or more) along the shortest possible path.

+ Abstraction: given a vertex s, find the shortest
path from s to any other vertex of G.

* Other shortest path problems:

- Different edges have different lengths (delay,
cost, etc.)

- All-pair shortest path problem: no specific
source.
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Using BFS for Shortest-path

Given a vertex s, find the shortest path from s
to any other vertex of G.

A 'centralized’ version of BFS:
1. Label vertex s with O.
2. i<0

3. Find all unlabeled vertices adjacent to at least
one vertex labeled i. If none are found, stop.

4. Label all the vertices found in (3) with i+ 1.
5. i« i+1landgo to(3).
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BFS for Shortest Path (i=0)

Vertices whose distance from s is O are labeled.
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BFS for Shortest Path (i=1)

Vertices whose distance from s is 1 are labeled.
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BFS for Shortest Path (i=2)

Vertices whose distance from s is 2 are labeled.
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BFS for Shortest Path (i=3)

Vertices whose distance from s is 3 are labeled.

In the next iteration we find out that the whole graph

is labeled and we stop. o




The BFS Tree

Theorem: Each vertex is
labeled by it its length from s.

Proof: By induction on the label.

For any v#s, let p(v) be the
vertex that 'discovered' v in BFS.

Then T={(p(v),v)} is a directed spanning tree rooted in
s, and for each vertex v, the path froms tovin Tisa
shortest path from s fo v in 6.

Note: the ‘centralized’ version is for simplification only.

When implemented, we need the queue as before.
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Single-Source Shortest Paths
(Dijkstra's algorithm)

Using BFS, we solve the problem of finding
shortest path from s fo any vertex v.

+ What if edges have associated costs or distances?

(BFS assumes edge costs are all 1.)

*+ Assume each edge (u,v) has non-negative weight

c(u,v).

+ A weight of a path = fotal weights of all edges on

path.

+ Problem: Find, for each vertex v, a shortest

(minimum weight) path from s o v.
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Idea of Dijkstra's Algorithm:

* Maintain:
— A[0..n-1] where A(v) is the cost of best path from
s to v found so far, and
- T, set of vertices v for which A(v) is not yet
known to be optimal.
* TInitially:
— A(s) = 0; A(v) = © for all v other than s.
-T=V.

* Ineach step:
- remove that vin T with minimum A(v)

- update those w in T s.t. (v,w) in E and
Aw) > A(V) + c(v.w).

=

w ™

4.

o1

Dijkstra's Algorithm

Assumption: c(u,v) = o if (u,v) not in E.

. A(S) <« 0 and for all v #s,

A(V) « oo
T « W
Let u be a vertex in T for which A(u)
i's mnimm
For every edge, if v/T and

A(v) > A(u) + c(u,v) then

AV) <« A(u) + c(u,v).
T=T-{u}, if Tis not enpty go to
step 3.




Dijkstra's Algorithm - Example

Dijkstra's Algorithm - Example

init u=s u=a
s| O o*| O*
a| o 3 3*
b| o 4 4
c| o 00 6
d o 00 00
e| o 00 9
f| o 8 8
In class exercise: complete the execution.
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* non-T vertices.

Why is this Algorithm Correct?

+ Theorem: At the termination of the algorithm,
A(v) is the length of the shortest path from s to v
for each vertex v of G.

* Proof: by induction on |V-T|.
Inductive hypothesis: Let |V-T|=k.
-0Ov in V-T, A(v) is the length of the
shortest path from s fo v.

-the vertices in V-T are the k closest
vertices to s.

-0Ov in T, A(v) is the length of the
shortest path from s to v that only
goes through vertices in V-T.

Why is this Algorithm Correct?

- Base case: |V-T|=1, T=V-{s}.

- for every v in V-T, A(v) is the length of
shortest path from s to v.

v' we init A(s) =0.

- the vertices in V-T are the k closest vertices
to s.

v' V-T={s}. sis surely the closest to s.

- for every vin T, A(v) is the length of
shortest path from s to v that only goes
through vertices in V-T.

v’ At this stage, A(v) =« forall vin V-T.
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The A values of vertices in V-T are correct
and for each such v, the shortest path from s
to v only goes through vertices in V-T

- Induction Step: Suppose true for first k steps.
The SP to the (k+1)s* closest vertex, say w,
can go through only vertices in V-T, otherwise,
there would be a closer vertex. Therefore,
when selecting the min, we select the (k+1)st
closest vertex to s.

Say w is added.

New A value for a vertex x is min of old A

value and A(w) + c(w,x)
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Dijktra's Algorithm - Run Time Analysis

Implementation 1:
- Adjacency lists.
- Anarray for the A values.
Complexity:
In each iteration:
1. Finding a vertex u in T with minimal A
In the whole execution: n+(n-1)+(n-2)+..+1 = O(n?)
2. Updating the A-values of u's neighbors:
In each iteration we check degree(u) values.
The total sum of the degrees in2m  O(m)
All together: O(m+n?)= O(n?) (remember, msn(n-1))
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Dijktra’s Algorithm - Run Time Analysis

» Implementation 2: data structure: priority queue
+ Stores set S (in our case, this is T) such that there is
a linear order on key values (in our case the key is the
A value).
* Supports operations:
- Insert(x) - insert element with key value x into set.
- FindMin() - return value of smallest element in set.
- DeleteMin() - delete smallest element in set.
- Find(x)
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Priority-Queue Implementations

* Priority-Queue can be implemented
such that each of these operations takes
O(log n) time for sets of size n.

Running time of Dijkstra's algorithm:

We need to consider insertions, delete
Mins, finds, modifying A values.

52




Running Time of Dijkstra's
Algorithm:
n insertions:  O(nlog n) time
n deleteMins:  O(n log n) time
m finds: O(m log n) time
m A-value modifications: O(m log n) time

Running time: O((n + m) log n))

+ The O(n?) is better for dense graphs
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Single-Source Shortest Paths
(Bellman-Ford's algorithm)

+ each edge (u,v) has a weight c(u,v).
*+ ¢(u,v) might be negative, but there are no negative
cycles.

1. A(s) — Oand for every vzs, A(V) — .

2. As long as there is an edge such that A(v) > A(u) +
c(e) replace A(v) by A(u) + c(e).

For our purposes « is not greater than « + 4, even if
kis negative.

* Running Example:

Bellman-Ford algorithm

* How do we implement this algorithm?

* Order the edges: e, e,, ..., e

*+ Perform step 2 by first checking e, thene,, etc.,

After the first such sweep, go through additional
sweeps, until an entire

e3,4
sweep produces M
el -3

no improvement. @

@ .

BF algorithm - correctness and run
time analysis

* Theorem: if a shortest path from s to v consists
of k edges, then by the end of the k™ sweep v will
have its final label.

* Proof: induction on k (not here).

- Since k is bounded by |V| (remember, no negative
cycles), step 2 is performed at most [E|0IV|
times.

+ Each comparison in step 2 can takes O(1) if the
graph is kept in an Adjacency Matrix (with the
weights) and an array with the A(v) values.

The time complexity of BF is O(|E|0V]).
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All-pair Shortest Path

* Input: a directed graph G=(V,E) with
V={1, 2, ..., n}. The length of edge e
is denoted by c(e), and it may be
negative.

» Output: All-pair shortest path: for
any two vertices v,u in V, what is the
shortest path from v to u

- we will only be interested in the /ength
of that path.
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All-pair Shortest Path

* We can solve this problem using
single-source shortest path
algorithms. For example, we can run
Bellman-Ford |V| times (one time for
each possible selection of the source
vertex s).

- Time comrlexu‘r
IVI*O(IVIIE=O(|VI?|EI)

- We will see a solution using Dynamic
Programming.
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All-pair Shortest Path

Define
59, )= {c(e) if i (F - j,

o0 if there is no edge from ito j.

Let d(i,j) be the length of a shortest
path from i to j among all paths which
may pass through vertices 1,2,... A but
do not pass through vertices A+1,
k+2,...,N.
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Floyd Algorithm (1962)

1. Init &°(i, j) as defined earlier
2.k ~ 1
3. For every 1</ j<ncompute
3K(i, §) — Min { 8<1(, j),
ok1(i, k) + d<I(k, j)}.
4. If k = n, stop. If not, increment A
and go to step 3.
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Floyd Algorithm

(i, J) < Min {8, j),
§I(i, k) + 3I(k, j)}.

The shortest path from i to j which
may pass through vertices 1,2,... .k
but do not pass through vertices
kel k+2... n:

1. Might not pass through vertex k, or

2. Might pass through k, and then it is
composed by two already-computed
shortest paths.
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Floyd Algorithm
8(i, §) — Min {8(i, j),
&I, k) + o1(k, j)}.

Theorem: The value of (i, j) is the
shortest path fromi to j

Proof idea: By induction on k, the value
of &(i, j) is correct. In particular, for
&(i, j) we get the shortest path.
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Floyd Algorithm

The value of (i, j) is meaningful only
if there are no negative cycles in G.
The existence of negative cycles is
detected by having (i, i) < O for
some i and k.

Each application of step 3 requires ##
operations, and step 3 is repeated »
times. Thus, the algorithm is of
complexity O(n3).
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Shortest-path algorithms -

Summary
- Single source, no weights:
BFS - O(m)

- Single source, non-negative weights:
Dijkstra O((n + m) log n)) or O(n?)

- Single source, arbitrary weights:
Bellman-Ford: O(nm)

« All-pair shortest path, arbitrary
weights: Floyd: O(n3)
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