Graph Algorithms —
Introduction and
Topological Sort

CSE 326
Data Structures
Unit 11

Reading: Sections 9.1 and 9.2

What are graphs?

Fofo fo o CNCA CACACT
et
TS

e

ﬁ
.

2

:

i

:

s

g

117

A7 Aprdullct98 Aprduldct99AprduDctEBAprdul0ctal Rpr

e But we are interested in a different kind of
“graph”

Graphs

» Graphs are composed of
> Nodes (vertices)
> Edges (arcs) node

7

e

edge

Varieties
 Nodes
> Labeled or unlabeled
* Edges

> Directed or undirected
> Labeled or unlabeled

Motivation for Graphs

» Consider the data structures we have node node
looked at so far... Value N(ixt Value N(ixt
e Linked list: nodes with 1 incoming
edge + 1 outgoing edge @

» Binary trees/heaps: nodes with 1
incoming edge + 2 outgoing edges @ @

e B-trees: nodes with 1 incoming edge
+ multiple outgoing edges ﬁ? @

5

Motivation for Graphs

 How can you generalize these data
structures?

» Consider data structures for representing
the following problems...

CSE Course Prerequisites at

Nodes = courses
Directed edge = prerequisite

Representing a Maze

Nodes = junctions
Edge = door or passage

Representing Electrical

Circuits
Battery +| B

N/

Switch

Nodes = battery, switch, resistor, etc. Resistor

Edges = connections

S, a=0; 6
S, b=1;
S, c=a+l s
S, d=b+a;
S e=d+1;
S e=c+d;
Which statements must execute before S;? 4
S,,S, S5 S,
Nodes = statements
Edges = precedence requirements 1 2

10

Information Transmission in a
Computer Network

Nodes = computers
Edges = transmission rates

11

Traffic Flow on Highways

urEe & s, s
33 co7 J’ f
. Juant Fit|
pn HI'IPEJ 5 { enond Wikkla N
Enda
- Hliears 0% i N
%% 28 i _ Nodes = cities
g & el sl - Edges = # vehicles on
o a0 i3k i e : ;
& i STV R N connecting highway
187 Fine .-1;

& bl Park g
v Ca enhydale JMaycreek [ssaquah

cog B Ma
an Height: 5 00 High

1pQuest.com,

rie i

=€ 1009 Nawigation Tachnolbgies?

12

Graph Definition

» A graph is simply a collection of nodes plus
edges
> Linked lists, trees, and heaps are all special cases
of graphs
* The nodes are known as vertices (node =
“vertex”)
* Formal Definition: A graph G is a pair (V, E)
where
> Vis a set of vertices or nodes
> E is a set of edges that connect vertices

13

Graph Example

* Here is a directed graph G = (V, E)

> Each edge is a pair (v,, V,), where v,, v, are vertices
inV
> V={A, B, C,D,E,F}

E ={(A,B), (A,D), (B,C), (QD\),V(C,E), (D,E)}
N @ e

® ®
O

14

Directed vs Undirected
Graphs

* If the order of edge pairs (v,, V,) matters, the graph is
directed (also called a digraph): (vq, V,) # (V,, V,)

* If the order of edge pairs (v,, v,) does not matter, the
graph is called an undirected graph: in this case, (v,,

Vy) = (Vo Vi)

15

Undirected Terminology

e Two vertices u and v are adjacent in an
undirected graph G if {u,v} is an edge in G
> edge e ={u,v} is incident with vertex u and vertex
V
* The degree of a vertex in an undirected
graph is the number of edges incident with it
> a self-loop counts twice (both ends count)
> denoted with deg(v)

16

Undirected Terminology

(A.B) is incident B is adjacent to C and C is adjacent to B

toAandto B

Self-loop

®

Degree =0

Degree =3

17

Directed Terminology

Vertex u is adjacent to vertex v in a directed
graph G if (u,v) is an edge in G

> vertex u is the initial vertex of (u,v)
Vertex v is adjacent from vertex u

> vertex v is the terminal (or end) vertex of (u,v)
Degree

> in-degree is the number of edges with the vertex
as the terminal vertex

> out-degree is the number of edges with the vertex
as the initial vertex

18

Directed Terminology

B adjacent to C and C adjacent from B

Q G In-degree = 0

In-degree = 2 Out-degree =0
Out-degree =1

19

Handshaking Theorem

Let G=(V,E) be an undirected graph with
|E|=m edges. Then

2m =" deg(v)
vV
Proof: Every edge contributes +1 to the
degree of each of the two vertices it is
incident with
> number of edges is exactly half the sum of deg(v)
> the sum of the deg(v) values must be even

20

Graph Representations

* Space and time are analyzed in terms of:
* Number of vertices, n = |V| and
* Number of edges, m = |E|

* There are at least two ways of representing
graphs:

« The adjacency matrix representation

« The adjacency list representation

21

Adjacency Matrix

A B C D E F
af 0 @ 0 00

Bl(1) o 1 0 0 0

clo 1 0 1 1 0

D[1 0 1 0 1 0

1if (v, w) is in E El0 0 1 1 0 -_O

Ml w) :{Ootherwise FLo o o 0 0 o0
Space = |V|?

Adjacency Matrix for a

Digraph
A B C D E F
NEROR: 0 0
Bl o o 1 0 00
clo o o0 1 10
p| 0 0 0 0 1 O
1if (v, w) is in E E/ 0 0 0 0 00
My, W) ={Ootherwise FLO 0 0 0 0 0)
Space = |V|?

Adjacency List

For each vin V, L(v) = list of w such that (v, w) is in E
a

O>w>m}
O

oj0||lg|0||0
m

m m o O W >

Space=a|V|+2b|E|

24

Adjacency List for a Digraph

For each vin V, L(v) = list of w such that (v, w) is in E

a b
®—@

D

G

m Q| O m

m m o O W >r

Space=a|V|+ b |E|

25

Trees

* An undirected graph is a tree if it is connected
and contains no cycles.

» A directed graph is a directed tree if it has a root
and its underlying undirected graph is a tree.

* r0V is aroot if every vertex v[1V is reachable
from r; i.e., there is a directed path which starts in
rand ends in v.

Alternative Definitions of
Undirected Trees

G is cycles-free, but if any new edge is added to G, a
cycle is formed.

for every pair of vertices u,v, there is a unique, simple
path from u to v.

G is connected, but if any edge is deleted from G, the
connectivity of G is interrupted.

G is connected and has n-1 edges.

27

Problem: Find an order in
which all these courses can
be taken.

Example: 142 143 378
370 321 341 322
326 421 401

In order to take a course, you must
take all of its prerequisites first

28

Topological Sort

Given a digraph G = (V, E), find a linear ordering of
its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

29

Topo sort - good example

Any linear ordering in which
all the arrows go to the right
@ is a valid solution

K DAY
ERUIGICAC

Note that F can go anywhere in thislist because it is not connected.
Also the solution is not unique.

30

Topo sort - bad example

&—p

e

Any linear ordering in which
an arrow goes to the left
@ is not a valid solution

D) ® &

NO!

31

Paths and Cycles

« Given a digraph G = (V,E), a path is a
sequence of vertices v,,v,, ...,V such that:
> (v,vi,)inEforall1<i<k
> path length = number of edges in the path
> path cost = sum of costs of participating edges
 Apathisacycleif:
> k>1and v, =v,
* Gis acyclic if it has no cycles.

32

Only acyclic graphs can be
topologically sorted

» A directed graph with a cycle cannot be
topologically sorted.

There is no
valid ordering
of A,B,C,D

33

Topo sort algorithm - 1

Step 1: Identify vertices that have no incoming edges
 The “in-degree” of these vertices is zero

l/ s
‘\ ®

34

Topo sort algorithm - 1a

Step 1: Identify vertices that have no incoming edges
* If no such vertices, graph has only cycle(s)
 Topological sort not possible — Halt.

N

Example of an ‘only-
cycles’ graph

35

Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges
* Select one such vertex

36

Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all
its outgoing edges from the graph. Place it in the
output.

o m A

37

Continue until done

Repeat Step 1 and Step 2 until graph is empty

(or until HALT due to cycles-only’).
Select

o

e

38

Example (cont’) - B

Select B. Copy to sorted list. Delete B and its edges.

39

C

Select C. Copy to sorted list. Delete C and its edges.

‘c

e = eee

40

D

Select D. Copy to sorted list. Delete D and its edges.

41

E, F

Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.

r =» 000000
E
Yes, we could select F earlier (in any step).

The topological sort is not necessarily unique.

42

Done

S
alBilc@EFE

43

Implementation

Assume adjacency list
representation

- 1 2 4
@ °
3 4 5
4 5
5
Translation 1 2 3 4 5 6 value next
array 'A|B|C|D|E|F] 6

44

Calculate In-degrees

D A

o 1 2 4

1| 2 3
In-Degree —> 1) 3 G 2
array; or add a 2 4 5
field to array A 5| 5

0Ol 6

45

Calculate In-degrees

for i =1tondo Di] :=0; endfor
for i =1ton do
x = Ail;
while x # null do
D x.value] := D x.value] + 1;
X = X.next;
endwhi | e

endf or

Time Complexity? O(n+m).

46

Maintaining Degree 0 Vertices

Key idea: Initialize and maintain a queue (or stack)
of vertices with In-Degree 0 D A

ol 1 2 4
Queue @ 7 2 ;
.\ 1| 3 4 5
./ Q ® - 5
e
0| 6

a7

1 :

Topo Sort using a Queue

(breadth-first)

After each vertex is output, when updating In-Degree array,

enqueue any vertex whose In-Degree becomes zero

Queue @ D A

dequeuel enqueue?
Qut put

(O RIF-SRINIREN N

.\Q o

o o0 A W N P

N (k| |lO O

48

Topological Sort Algorithm

Some Detall

N

4.

Store each vertex’s In-Degree in an array D

Initialize queue with all “in-degree=0" vertices

While there are vertices remaining in the
queue:
(a) Dequeue and output a vertex

(b) Reduce In-Degree of all vertices adjacent to it by 1

(c) Enqueue any of these vertices whose In-Degree
became zero

If all vertices are output then success,
otherwise there is a cycle.

49

Mai n Loop
whil e not Enpty(Q do
x = Dequeue(Q
Qut put (x)
y 1= Alx];
while y # null do
Dy.value] := Dy.value] - 1,
if Dy.value] = 0 then Enqueue(Q y.value);
y = Yy.next;
endwhi | e
endwhi | e

Time complexity? O(out_degree(x)) .
50

Topological Sort Analysis

Topo Sort using a Stack
(depth-first)

Initialize In-Degree array: O(|V| + |E|)
Initialize Queue with In-Degree 0 vertices: O(|V|)
Dequeue and output vertex:

> |V| vertices, each takes only O(1) to dequeue and

output: O(|V])

Reduce In-Degree of all vertices adjacent to a vertex

and Enqueue any In-Degree 0 vertices:

> O(|E|]) (total out_degree of all vertices)

For input graph G=(V,E) run time = O(|V| + |E|)
> Linear time!

51

After each vertex is output, when updating In-Degree array,
push any vertex whose In-Degree becomes zero

St ack @ D A

pop | [push o 1 2 4
Qut put 0| 2 3
1| 3 4 5
"\Q ‘ 1| 4 5
‘i . 2 5
O 6

52

