Binomial Queues

CSE 326
Data Structures
Unit 9

Reading: Section 6.8

Binomial Queues

Merging heaps

» Binary Heap has limited (fast) functionality
> FindMin, DeleteMin and Insert only
> does not support fast merges of two heaps

» For some applications, the items arrive in
prioritized clumps, rather than individually

* |Is there somewhere in the heap design that
we can give up a little performance so that we
can gain faster merge capability?

Worst Case Run Times

» Binomial Queues are designed to be
merged quickly with one another

» Using pointer-based design we can
merge large numbers of nodes at once
by changing a small number of pointers

* More overhead than Binary Heap, but
the flexibility is needed for improved
merging speed

Binary Heap Binomial Queue
Insert ©(log N) O(log N)

FindMin o(1) o(log N)

DeleteMin ©(log N) O(log N)

Merge O(N) o(log N)

Binomial Queues Binomial Queue Building Blocks

e Binomial queues give up O(l_) FindMin B, B, B,| B,
performance in order to provide O(log N) merge
performance

* A binomial queue is a collection (or forest) of
heap-ordered trees

> Not just one tree, but a collection of trees!

> Each tree has a defined structure and capacity

> Each tree has the familiar heap-order property depth 4 3 2 1

number of elements 24=16 23=8 22=4

Structure Property Powers of 2 (one more time)

* Any number N can be represented in

 Each tree contains two sl Bl B e imnel
copies of the previous tree A QO base 2: 3 " a2
> the second copy is attached at > A base 2 value identifies the powers of 2
the root of the first copy that are to be included
e The number of nodes in a cf f ‘f IHIS
tree of depth d is exactly 2d R [R|R | R [Decimaly
1 3
111010 4
depth 5 1 0 11001 13
number of elements 22=4 21=2 | 20=1

Numbers of nodes

* Any number of entries in the binomial
gueue can be stored in a forest of
binomial trees

» Each tree holds the number of nodes
appropriate to its depth, i.e., 29 nodes

» So the structure of a forest of binomial
trees can be characterized with a single
binary number

> 101, - 1.22+ 0-21+ 1-2° =5 nodes

What is a merge?

Structure Examples

e There is a direct correlation between
> the number of nodes in the tree
> the representation of that number in base 2
> and the actual structure of the tree

* When we merge two queues of sizes N, and
N,, the number of nodes in the new queue is
the sum of N;+N,

» We can use that fact to help see how fast
merges can be accomplished

11

(4)
(®) (5
@
N=2,0=10, | 22=4 =2 | 20=1 ‘N=410:1002 2=4 2=2| 20=1
® (@ O
(®) (5
@
NE3,p=11,| 22=4 | 2t=2 | 20=1 N=5,0=101,| 22=4 | 21=2 | 20=1
®
BQ.1
Example 1.
| ML=l | 224 | 2122 20=1
Merge BQ.1 and
BQ.2
BQ.2
Easy Case. +BQ e
There are no \N=2m=102 2=4 | 2=2| 20=1
comparisons and
there is no o @
restructuring. =BQ.3 @
INe3y,=11,| 224 | 21=2 | 20=1

©-©
020,
S,

BQ.1 BQ.1

Example 2.

[N=3,=11,| 2=4 | 21=

N

2
|

[EnY

Merge BQ.1 and BQ.2 \’\':21():102 2=4 | 2=

N
N
S

|
[EnY

Example 3.

This is an add with a Merge BQ.1 and BQ.2

@©-®

20,
@

carry out. +BQ.2 +BQ.2
)) _ Part 1 - Form the
It is accomplished with - — o carry. - — PR Ry
one comparison and Ne20m10,| 224 | 2=2 [2=1 INe3,=11,| 2224 | 21=2 | 20=1
one pointer change: 0
O(1) @
=BQ3 | W) = carry @
\ N=4,,=100, | 22=4 | 21=2 | 20=1] \N=21o=102 2=4 | =2 | =1
carr : +BQ.1 % .
y ® Merge Algorithm
N=2,p=10, | 22=4 | 20=2 | 20=1 | [N=8y=11,| 22=4 | 2t=2 | 20=1 : : " ,
e, [t « Just like binary addition algorithm
Example 3. @ » Assume trees X,,...,X, and Y,...,Y, are
+BQ.2 (5) binomial queues
Part 2 - Add the existing > X;and Y, are of type B; or null
values and the carry.
"\':31‘):112 z2=4 |2=2]| 2=1 C :=null; //initial carry is null//
0 a for i =0 to n do
: conmbine X,Y;, and G to formZ and new C,,
=BQ3 | W@®) | (8 Zpy 1= G
[N=6,=110,| 2=4 | 21=2 | =1

O(log N) time to Merge

Exercise
© (2) ®
® D | ®©
®@
N=3,p=11,| 22=4 | 2t=2 | 20=1 N=7,0=111,| 22=4 | 2!=2 | 20=1
Insert

 Create a single node queue B, with

the new item and merge with
existing queue

* O(log N) time

19

For N keys there are at most/log, N |
trees in a binomial forest.

Each merge operation only looks at the
root of each tree.

Total time to merge is O(log N).

18

DeleteMin

hwDN PR

o1

Assume we have a binomial forest X,,..., X,
Find tree X, with the smallest root
Remove X, from the queue

Remove root of X, (return this value)

> This yields a binomial forest Y, Y, ...,Y, .
Merge this new queue with remainder of the
original (from step 3)

Total time = O(log N)

20

Implementation DeleteMin Example

« Binomial forest as an array of multiway trees 0 fi”gMé” 45 6 7 0 123 45 6 7
> FirstChild, Sibling pointers T T T T T 1T VI T T T TITT]
0 123 45 67 VA . Lo Remove min
ANENEEER alral 1 /
L @6 L2 I ,
I I I 9 4/7/10 9 4/7/10
OO A mjEgnEgn njinEgnzgn
F® @] EBEE oRRalE: B
@ ‘13//8 J12 J15 115
J’l [| [| 7 Return this
1|5 I
21 22
0 123 45 617
0 123 45 67
Oldforest O 1 2 3 45 6 7
LLITTIT1] % SPrrT T T, e e
£ ra— 6 £ 35 4 5 6
OB a5 - w3 LGLILTTT]
J9 19 ? / ‘i’ \2‘
| |] 1
./ New forest 0 123 4567 : :
EgnEgn !0|1|2|3|4|5|6|7\ AFEEEEEE ! /T/JT/?
A13//v 8 J12 / i N iﬁ # \4 1I3/' ? 1I2
Al | I 10 7 4 | Al I /
’ | jl /l 112 '/13 8 =
1|5 12][13] [8 minEgn l
[0 | J
J 15
1|5 I

23 24

Why Binomial?

Other Priority Queues

dj_ d B B B B B
(kj (d-k)!k! 4 3 2 ! OO

tree depth d 4 3 2 1 0

nodes at depth k 1,4,6,4,1 1,331 1,21 1,1 1

Exercise Solution

25

g° - B8°

27

» Leftist Heaps
> O(log N) time for insert, deletemin, merge

> The idea is to have the left part of the heap
be long and the right part short, and to
perform most operations on the left part.

o Skew Heaps (“splaying leftist heaps”)

> O(log N) amortized time for insert,
deletemin, merge

26

