Binomial Queues

CSE 326
Data Structures
Unit 9

Reading: Section 6.8

Binomial Queues

- Binomial Queues are designed to be merged quickly with one another
- Using pointer-based design we can merge large numbers of nodes at once by changing a small number of pointers
- More overhead than Binary Heap, but the flexibility is needed for improved merging speed

Merging heaps

- Binary Heap has limited (fast) functionality
 - > FindMin, DeleteMin and Insert only
 - does not support fast merges of two heaps
- For some applications, the items arrive in prioritized clumps, rather than individually
- Is there somewhere in the heap design that we can give up a little performance so that we can gain faster merge capability?

2

Worst Case Run Times

	Binary Heap	Binomial Queue	
Insert	Θ(log N)	Θ(log N)	
FindMin	$\Theta(1)$	Θ(log N)	
DeleteMin	Θ(log N)	Θ(log N)	
Merge	$\Theta(N)$	Θ(log N)	

Binomial Queues

- Binomial gueues give up O(1) FindMin performance in order to provide O(log N) merge performance
- A binomial queue is a collection (or *forest*) of heap-ordered trees
 - Not just one tree, but a collection of trees!
 - > Each tree has a defined structure and capacity
 - > Each tree has the familiar heap-order property

5

Structure Property

depth

- Each tree contains two copies of the previous tree
 - > the second copy is attached at the root of the first copy
- The number of nodes in a tree of depth d is exactly 2^d

Binomial Queue Building Blocks

Powers of 2 (one more time)

- Any number N can be represented in base 2: $\sum_{i=0}^{i=n-1} a_i 2^i$
 - A base 2 value identifies the powers of 2 that are to be included

6

Numbers of nodes

- Any number of entries in the binomial queue can be stored in a forest of binomial trees
- Each tree holds the number of nodes appropriate to its depth, i.e., 2^d nodes
- So the structure of a forest of binomial trees can be characterized with a single binary number
 - $101_2 \rightarrow 1.2^2 + 0.2^1 + 1.2^0 = 5$ nodes

9

What is a merge?

- There is a direct correlation between
 - > the number of nodes in the tree
 - > the representation of that number in base 2
 - > and the actual structure of the tree
- When we merge two queues of sizes N₁ and N₂, the number of nodes in the new queue is the sum of N₁+N₂
- We can use that fact to help see how fast merges can be accomplished

Structure Examples

	5 8		
N=4 ₁₀ =100 ₂	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$

Example 1.

Merge BQ.1 and BQ.2

Easy Case.

There are no comparisons and there is no restructuring.

Example 2.	BQ.1		3	
Merge BQ.1 and BQ.2	$N=2_{10}=10_2$	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$
This is an add with a carry out.	+ BQ.2		6	
It is accomplished with one comparison and	N=2 ₁₀ =10 ₂	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$
one pointer change: O(1)	= BQ.3	(1) (4) (3) (6)		
	N=4 ₁₀ =100 ₂	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$

	BQ.1		3	7
Example 3.	N=3 ₁₀ =11 ₂	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$
Merge BQ.1 and BQ.2 Part 1 - Form the	+ BQ.2		6	8
carry.	N=3 ₁₀ =11 ₂	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$
	= carry		7	
	N=2 ₁₀ =10 ₂	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$

carry		8	
N=2 ₁₀ =10 ₂	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$

+ BQ.1		3	7
N=3 ₁₀ =11 ₂	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$

Example 3.

Part 2 - Add the existing values and the carry.

Merge Algorithm

- Just like binary addition algorithm
- Assume trees X₀,...,X_n and Y₀,...,Y_n are binomial queues
 - → X_i and Y_i are of type B_i or null

 $\begin{array}{l} \textbf{C}_0 := \text{null; //initial carry is null//} \\ \text{for i = 0 to n do} \\ \text{combine } \textbf{X}_i, \textbf{Y}_i, \text{ and } \textbf{C}_i \text{ to form } \textbf{Z}_i \text{ and new } \textbf{C}_{i+1} \\ \textbf{Z}_{n+1} := \textbf{C}_{n+1} \end{array}$

Exercise

O(log N) time to Merge

- For N keys there are at most \[log_2 N \] trees in a binomial forest.
- Each merge operation only looks at the root of each tree.
- Total time to merge is O(log N).

17

18

Insert

- Create a single node queue B₀ with the new item and merge with existing queue
- O(log N) time

DeleteMin

- 1. Assume we have a binomial forest X₀,...,X_m
- 2. Find tree X_k with the smallest root
- 3. Remove X_k from the queue
- 4. Remove root of X_k (return this value)
 - $\qquad \qquad \text{This yields a binomial forest } Y_0,\,Y_1,\,...,Y_{k\text{-}1}.$
- 5. Merge this new queue with remainder of the original (from step 3)
- Total time = O(log N)

Implementation

- Binomial forest as an array of multiway trees
 - > FirstChild, Sibling pointers

DeleteMin Example

24

Why Binomial?

Other Priority Queues

- Leftist Heaps
 - O(log N) time for insert, deletemin, merge
 - > The idea is to have the left part of the heap be long and the right part short, and to perform most operations on the left part.
- Skew Heaps ("splaying leftist heaps")
 - O(log N) amortized time for insert, deletemin, merge

Exercise Solution

26