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Reading: Sections 6.1-6.4
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Revisiting FindMin

• Application: Find the smallest ( or 
highest priority) item quickly
› Operating system needs to schedule jobs 

according to priority instead of FIFO
› Event simulation (bank customers arriving 

and departing, ordered according to when 
the event happened)

› Find student with highest grade, employee 
with highest salary etc.
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Priority Queue ADT

• Priority Queue can efficiently do:
› FindMin (and DeleteMin)

› Insert

• What if we use…
› Lists: If sorted, what is the run time for 

Insert and FindMin? Unsorted?
› Binary Search Trees: What is the run time 

for Insert and FindMin? 
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Less flexibility → More speed

• Lists
› If sorted: FindMin is O(1) but Insert is O(N)
› If not sorted: Insert is O(1) but FindMin is O(N)

• Balanced Binary Search Trees (BSTs)
› Insert is O(log N) and FindMin is O(log N)

• BSTs look good but…
› BSTs are efficient for all Finds, not just FindMin
› We only need FindMin
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Better than a speeding BST

• We can do better than Balanced Binary 
Search Trees.
› Very limited requirements: Insert, FindMin, 

DeleteMin. The goals are:
› FindMin is O(1)
› Insert is O(log N)
› DeleteMin is O(log N)
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Binary Heaps (minimum)
• A binary heap is a binary tree (NOT a BST) that 

is:
› Complete: the tree is completely filled except 

possibly the bottom level, which is filled from left to 
right

› Satisfies the heap order property:
• every node is less than or equal to its children
• In particular, the root node is always the smallest 

node
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Binary Heaps (maximum)
• A binary heap is a binary tree (NOT a BST) that 

is:
› Complete: the tree is completely filled except 

possibly the bottom level, which is filled from left to 
right

› Satisfies the heap order property
• every node is greater than or equal to its children
• In particular, the root node is always the largest 

node
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Heap order property
• A heap provides limited ordering information

• Each path is sorted, but the subtrees are not 
sorted relative to each other
› A binary heap is NOT a binary search tree

2

4 6

7 5

-3

0 2

0

1

2 6

8 4 7
These are all valid binary heaps (minimum)
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Binary Heap vs Binary Search 
Tree

94

10 97

5 24

5

10 94

97 24

Binary Heap Binary Search Tree

Parent is greater than left 
child, less than right child

Parent is less than both
left and right children

min 
value

min value

10

Structure property

• A binary heap is a complete tree
› All nodes are in use except for possibly the 

right end of the bottom row
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Examples

2

64

57

2

64

5

not complete

6

24

complete tree, 
heap order is "max"

complete tree, 
heap order is "min"

2

65

47

complete tree, but min
heap order is broken

15

12

Array Implementation of 
Heaps

• Root node = A[1]
• Children of A[i] are in A[2i], A[2i + 1]

› Proof: By induction on i

• Keep track of current size N (number of 
nodes)

N = 5

value

index

2

64

57

- 2 4 6 7 5
0 1 2 3 4 5 6 7

1

54

32
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FindMin and DeleteMin

• FindMin: Easy!
› Return root value A[1]
› Run time = ?

• DeleteMin:
› Delete (and return) value 

at root node 
• How can we delete?

2

34

10857

146911
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Maintain the Structure 
Property

• We now have a “Hole” at 
the root
› Need to fill the hole with 

another value

• When we get done, the 
tree will have one less 
node and must still be 
complete

34

10857

146911

34

10857

146911
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Maintain the Heap Property

• The last value has lost its 
node
› we need to find a new 

place for it

• We can do a simple 
insertion sort operation to 
find the correct place for 
it in the tree

34

10857

14

6911
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DeleteMin: Percolate Down

• Keep comparing with children A[2i] and A[2i + 1]
• Copy smaller child up and go down one level
• Done if both children are ≥ item or reached a leaf node
• What is the run time?

34

10857

14

6911

4

10857

14

6911

3

84

101457

6911

3
?

?
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Percolate Down

Per cDown( i : i nt eger ,  x : i nt eger ) :  {
/ /  N i s t he number  of  ent r i es i n heap/ /
j  :  i nt eger ;
Case{

2i  > N :  A[ i ]  : = x;  / / at  bot t om/ /
2i  = N :  i f  ( A[ 2i ]  < x)  t hen

A[ i ]  : = A[ 2i ] ;  A[ 2i ]  : = x;
el se A[ i ]  : = x;

2i  < N :  i f  ( A[ 2i ]  < A[ 2i +1] )  t hen j  : = 2i ;  
el se j  : = 2i +1;
i f  ( A[ j ]  < x)  t hen

A[ i ]  : = A[ j ] ;  Per cDown( j , x) ;
el se A[ i ]  : = x;

} }
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DeleteMin: Run Time Analysis

• Run time is O(depth of heap)
• A heap is a complete binary tree
• Depth of a complete binary tree of N 

nodes?
› depth = �log2(N)�

• Run time of DeleteMin is O(log N)
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Insert

• Add a value to the tree
• Structure and heap 

order properties must 
still be correct when we 
are done

84

101457

6911

3

2
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Maintain the Structure 
Property

• The only valid place for 
a new node in a 
complete tree is at the 
end of the array

• We need to decide on 
the correct value for the 
new node, and adjust 
the heap accordingly

84

101457

6911

3

2
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Maintain the Heap Property

• First, the new value goes to 
A[N+1] (and N is increased)

• Next, we find the correct 
place for it in the tree

2

84

101457

6911

3
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Insert: Percolate Up

2

84

101457

6911

3

• Start at last node and keep comparing with parent A[i/2]
• If parent larger, copy parent down and go up one level
• Done if parent ≤ item or reached top node A[1]
• Run time?

?

2
5

84

10147

6911

3

?

2

5

8

101447

6911

3?

23

Insert: Done

5

83

101447

6911

2

• Run time?
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PercUp

• Define PercUp which percolates new 
entry to correct spot.

• Note: the parent of i is i/2

Per cUp( i :  i nt eger ,  x :  i nt eger ) :  {
????
}
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Sentinel Values
• Every iteration of Insert needs to test:

› if it has reached the top node A[1]

› if parent ≤ item

• Can avoid first test if A[0] contains a very 
large negative value
› sentinel -∞ < item, for all items

• Second test alone always stops at top

-∞

5

83

91047

6911

2

value

index

-∞ 2 3 8 7 4 10 9
0 1 2 3 4 5 6 7

11 9 6 5
8 9 10 11 12 13
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Binary Heap Analysis

• Space needed for heap of at most MaxN
nodes: O(MaxN)
› An array of size MaxN, plus a variable to store the 

current size N, plus an array slot to hold the sentinel

• Time
› FindMin: O(1)
› DeleteMin and Insert: O(log N)
› BuildHeap from N inputs : O(N) 
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Build Heap

Bui l dHeap {
f or  i  = N/ 2 t o 1 by –1 Per cDown( i , A[ i ] )

}

3

105

12849

672

11
N=11

4

105

12839

672

11
1

4

32

5 6 7

11
109

8
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Build Heap

4

105

9832

679

11

4

85

121032

679

11
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Build Heap

4

82

121035

679

11

11

83

121045

679

2
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Analysis of Build Heap

• Assume N = 2K –1 (a full tree of height k)
› Level 1: k -1  steps for 1 item
› Level 2: k - 2 steps for 2 items
› Level 3: k - 3 steps for 4 items
› In general:  Level i : k - i steps for 2i-1 items
› Until Level k-1: 1 step for 2k-2 items

O(N)                    

1-k2)2 ik (  Steps Total k1i
1k

1i

=

−=−= −
−

=
�
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Other Heap Operations
• Find(X, H): Find the element X in heap H of N 

elements
› What is the running time? O(N)

• FindMax(H): Find the maximum element in H
• Where FindMin is O(1)

› What is the running time? O(N)
• We sacrificed performance of these operations 

in order to get O(1) performance for FindMin
• How can we support FindMax in O(1)?

› Hint: double time and space complexity..
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Other Heap Operations

• DecreaseKey(P,∆): Decrease the key 
value of node at position P by a positive 
amount ∆, e.g., to increase priority
› First, subtract ∆ from current value at P
› Heap order property may be violated
› so percolate up to fix
› Running Time: O(log N)
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Other Heap Operations

• IncreaseKey(P,∆): Increase the key 
value of node at position P by a positive 
amount ∆, e.g., to decrease priority
› First, add ∆ to current value at P
› Heap order property may be violated
› so percolate down to fix
› Running Time: O(log N)
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Other Heap Operations

• Delete(P): E.g. Delete a job waiting in 
queue that has been preemptively 
terminated by user
› Use DecreaseKey(P,∞) followed by 

DeleteMin
› Running Time: O(log N)
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Other Heap Operations

• Merge(H1,H2): Merge two heaps H1 and 
H2 of size O(N). H1 and H2 are stored in 
two arrays. 
› Can do O(N) Insert operations: O(N log N) 

time

› Better: Copy H2 at the end of H1 and use 
BuildHeap.  Running Time: O(N)
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PercUp Solution

Per cUp( i :  i nt eger ,  x :  i nt eger ) :  {
i f  i  = 1 t hen A[ 1]  : = x
el se i f  A[ i / 2]  < x t hen 

A[ i ]  : = x;
el se 

A[ i ]  : = A[ i / 2] ;  
Per cup( i / 2, x) ;

}


