
B-Trees and Rank Trees

CSE 326
Data Structures

Unit 7
Reading: Section 4.7 

(B trees only)
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• Example: B-tree of order 3 has 2 or 3 
children per node

• Search for 8

Beyond Binary Search Trees: 
Multi-Way Trees

13:-

6:11

3  4 6  7  8 11 12 13  14 17 18

17:-
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B-Trees are multi-way search trees commonly used in database 
systems or other applications where data is stored externally on
disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:
1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between �M/2�

and M children.
3. All leaves are at the same depth. 

All data records are stored at the leaves.
Internal nodes have “keys” guiding to the leaves.
Leaves store between �M/2� and M data records.

B-Trees
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B-Tree Details

Each (non-leaf) internal node of a B-tree has:
› Between �M/2� and M children.
› up to M-1 keys k1 < k2 < ... < kM-1

Keys are ordered so that:
k1 < k2 < ... < kM-1

kM-1. . . . . . ki-1 kik1
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Properties of B-Trees

Children of each internal node are "between" the items in that node.
Suppose subtree Ti is the ith child of the node:

all keys in Ti must be between keys ki-1 and ki

i.e. ki-1 ≤ Ti < ki

ki-1 is the smallest key in Ti

All keys in first subtree T1 < k1

All keys in last subtree TM ≥ kM-1

k1

TTii

. . . . . . kki-1 kkii

TTMTT11

kkM-1

. . . . . . 
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Example: Searching in B-trees

13:-

6:11

3  4 6  7  8 11 12 13  14 17 18

17:-

• B-tree of order 3: also known as 2-3 tree (2 to 3 
children)

• Examples: Search for 9, 14, 12
• Note: If leaf nodes are connected as a Linked List, B-

tree is called a B+ tree – Allows sorted list to be 
accessed easily

- means empty slot
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Inserting into B-Trees
• Insert X: Do a Find on X and find appropriate leaf node

› If leaf node is not full, fill in empty slot with X
• E.g. Insert 5

› If leaf node is full, split leaf node and adjust parents up to root 
node

• E.g. Insert 9 13:-

6:11

3  4 6  7  8 11 12 13  14 17 18

17:-
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Deleting From B-Trees

• Delete X : Do a find and remove from leaf
› Leaf underflows – borrow from a neighbor

• E.g. 11

› Leaf underflows and can’t borrow – merge nodes, delete 
parent

• E.g. 17 13:-

6:11

3  4 6  7  8 11 12 13  14 17 18

17:-
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Run Time Analysis of B-Tree 
Operations

• For a B-Tree of order M
› Each internal node has up to M-1 keys to search

› Each internal node has between �M/2� and M children
› Depth of B-Tree storing N items is O(log �M/2� N)

• Find: Run time is:
› O(log M) to binary search which branch to take at each 

node. But M is small compared to N.
› Total time to find an item is O(depth*log M) = O(log N)
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Storing Additional Data in a 
Tree Node

• In many cases, it is useful to store additional 
data in each node. This information can be 
used to implement efficiently additional 
operations. 

• Definition: The rank of a value x in a set S is 
the location of x in a sorted list of the 
elements of S. 
› Example rank(5) in {8,2,7,5} is 2.

• Problem 1: rank(x) in O(log N)
• Problem 2: sum of elements smaller than x in 

O(log N).
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Storing Additional Data in a 
Tree Node

• We will solve these problems by storing 
additional data in the tree nodes.

• First – we will see a solution in O(Tree 
depth)

• Next – we will see how to update and 
use the additional data in a balanced
search tree.
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Rank Tree

• A rank tree is a tree in which we keep in 
each node v (in addition to all other data) 
the number, n(v), of nodes in the subtree
rooted at v.
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Rank Tree
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• What is the rank of x?

x

Where in the tree are the values smaller than x?
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Rank Tree
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Consider the path, p, from the root to x. 

rank(x) = �wn(w) + |{v in p and v<x}| ,

w is a left child of a node with value v≤x in p.

In the example, rank(x) = 2+1+1+ 2 = 6.

Time to calculate rank(x) is O(Tree depth)
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Storing additional data

• Assume that we keep in each node v (in 
addition to all other data) the sum, s(v), of 
all the values in the subtree rooted at v.
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Recall Problem 2: find sum 
of values smaller than x in 
O(log N). 16

Storing additional data

• Example: what is the sum of values smaller 
than 17?

• Sum the values along the search path for 17, 
that are smaller than 17 + the values stored in 
their left children.
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(8+13)+(10+9)+(15+0)=55
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Balanced Rank Tree

• In order to implement rank(x) in O(log N) we 
update the value n(v) for each node for which 
this value is affected by 
insertions/deletions/rotations/any other 
balancing operations.

• The challenge – make these updates efficiently. 
• We will see as example the way n(v) is updated 

in AVL trees.
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Updating the additional data
• How do we update n(v)?
1. When inserting a node, increase by 1 all the values 

n(v) along the insertion path from the root to the leaf.
2. During rotations, update the values as needed: 

example: LL rotation
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Updating the additional data
• How do we update s(v) [sum of values in subtree]?
1. When inserting a value x, increase by x all the values 

s(v) along the insertion path from the root to the leaf.
2. During rotations, update the values as needed: 

example: LL rotation
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Exercise

Suggest a data structure that will support the following operations, 
each in O(log n), where n is the number of elements in the structure 
at the time of the operation.

The elements in the structure are integral number, each element is 
colored green or red.
•Insert(i) – add the number i to the structure (if it is not there yet). A 
new number is added as green.
•PaintRed(i) – if i is in the structure, and it is green, color it red.
•FindDiff(k) – return the difference between the sum of the green 
elements that are smaller than k, and the sum of the red elements 
that are smaller than k. 



21

Summary of Search Trees

• Problem with Binary Search Trees: Must keep tree 
balanced to allow  fast access to stored items

• AVL trees: Insert/Delete operations keep tree balanced
• Splay trees: Repeated Find operations produce 

balanced trees
• Multi-way search trees (e.g. B-Trees): More than two 

children
› per node allows shallow trees; all leaves are at the 

same depth
› keeping tree balanced at all times

• By storing additional data in tree nodes, many other 
operations can be supported in O(log n).


