[image: image2.png]

CSE 326 – Data Structures

Winter 2004.

Final Exam.
3/18/2004

	Student name
	Student number

	
	

	Question
	

	1
	 /16

	2
	 /18

	3
	 /24

	4
	 /20

	5
	 /22

	Total
	 /100

Question 1 (16 points)

a. Union-Find is implemented using up-trees with union-by-weight and path- compression. In union-by-weight, ties are broken in favor of high id; that is, in union(i,j), if the two sets have the same size and i<j then the name of the new set is j.

Initially there are 7 singleton sets {1},{2},{3},{4},{5},{6},{7}.

1. Fill in the content of the associated array after the following operations are performed.
 Union(4,5) , Union(5,6), Union(2,3), Union(3,7), Union(1,3), Union(3,5)
	index
	1
	2
	3
	4
	5
	6
	7

	up
	3
	3
	0
	5
	3
	5
	3

	weight
	
	
	7
	
	3
	
	

2. Fill in the content of the associated array after find(6) is performed (after the above union sequence).

	index
	1
	2
	3
	4
	5
	6
	7

	up
	3
	3
	0
	5
	3
	3
	3

	weight
	
	
	7
	
	
	
	

b. An archaeologist found an old vase with the following strange text:

A binary search tree is traversed preorder. The output is:

8, 5, _1__, 3, 7, _15__, 13

The same tree is now traversed postorder. The output is:

_3__, 1,__7_, _5__, _13__, 15,_8__

Help the archaeologist complete the missing entries.

Question 2 (18 points - 3* 6)

For each of the following questions, circle the correct answer, and explain briefly.

1. A sorted array of n integers (sorted in non-decreasing order) is the input of a build_heap() operation- that builds a minimum binary heap. The entries of the array are indexed 1,..,n. As a result of build_heap():

a. There are no changes in the array.

b. The location of ((n) elements is changed.
c. The number of elements that change their location depends on the specific values of the integers stored in the array.

Explain:

 a. A sorted array represents a binary-heap. A[i] >= A[i+1], therefore A[i]>=A[2i] and A[i]>=A[2i+1]. This implies that no swaps will be done in the percolate down.
2. The 10 keys {22, 66, 15, 39, 10, 1011, 214, 318, 23, 1007} (and only these!) need to be stored in a hash table. Which of the following hash-function would you use?
a. A table of size 100, and hash function f(n) = n mod 100
b. A table of size 11, and hash function f(n) = n mod 11
c. A table of size 10, and hash function f(n) = n mod 10
Explain:

c. This is an example of perfect hashing. In b the table size is prime but there are collisions.
3. Consider a sorted list of size n. Now add a new entry to the end of the list and resort. Of the following sorting algorithms, which has the best time complexity for the above task?

a. Quick Sort

b. Merge Sort

c. Insertion Sort

Explain:
c. In insertion sort this takes O(n) – O(n) to verify that the first n-1 entries are sorted and additional O(n) to shift the last element into the right location.
Question 3 (24 points – 4*6)

For each of the following claims, determine if it is True. Justify shortly a positive answer; give a counter example for a negative answer.

1. For any state of an AVL tree, there exists a sequence of insert operations that ends-up in this state without any rotations.

Circle: True / False. Explain:

True. The tree can be created by adding the elements level after level (the best formal description of this process is ‘according to their BFS distance from the root’)
2. Let k be a key stored in a splay tree. If find(k) causes no changes in the tree, k must be stored at the root.

Circle: True / False. Explain:

True. In Splay tree, an accessed element is brought to the root.
3. Given an undirected graph G=(V,E) and a vertex s(V, if there is a single DFS tree rooted at s then G is cycle-free.

Circle: True / False. Explain:

True. Assume that there is a cycle, let v be the first vertex marked in the cycle. The algorithm can now select the next vertex to be marked, and the two different selections will lead to two different DFS trees.
4. Given an undirected connected graph with positive weights on the edges. If two or more edges have the same weight then the minimum spanning tree is not unique.

Circle: True / False. Explain:

False. Example: o----o-----o both edges have the same weight (and a single MST)
Question 4 (20 points)

The keys in a binary tree are positive integers.

As you know, for every node v in the tree, there is a single path from the tree root to v. Let upsum(v) denote the sum of the keys along this path (not including the key of v). In particular, the upsum of the root node is defined to be zero.

A node, v, in the binary tree is called ‘happy’ if key(v) > upsum(v).

A binary tree is called ‘happy’ is all its nodes are happy.

For example, in this graph, 3 is happy (3>0), 5 is happy (5>3), and 2 is not happy (2<3), so the whole tree is not happy.

· Warm-up (2 points): For each of the following trees, determine if it is happy (circle the correct answer).

[image: image1]
The tree is implemented using pointers to the left and right subtrees (as usual). For each node, the following structure is kept. The field key includes the node’s value; the field upsum is initially ‘0’.
struct node {

int key;

int upsum;

struct node pointer left;

struct node pointer right;

};

Complete the code of the recursive function IsHappy(), that gets as input a pointer to a tree root, and

· Returns as output ‘1’ if the tree is happy, and ‘0’ otherwise.

· For every node v, updates the field v.upsum to be the sum of all the keys in the path from the root to v (excluding the value of v). This should be done regardless of the tree being happy.
Let n be the number of nodes in the tree. The time complexity of your function should be O(n). Moreover, each node should be visited exactly once.
IsHappy(struct node pointer v): int {

if (v == NULL) return 1;
// always need to check for null

// Also, an empty tree is happy.

if (v.left)

v.left.upsum = v.key + v.upsum;

if (v.right)

v.right.upsum = v.key + v.upsum;

leftOK = IsHappy(v.left);
// note that we don’t need to check for NULL, as

// the recursive call will

rightOK = IsHappy(v.right);

return v.key > v.upsum and leftOK and rightOK;

}

Many people did not check for NULL correctly. Another common error was to not recursively call a child if v.key > v.upsum.

Question 5 (22 points)

Given an undirected graph G=(V,E), a subset H(V of the vertices is called a hitting-set, if for every vertex v(V, v belongs to H or there exists an edge (v,u)(E such that u belongs to H. In other words, v or one of its neighbors belongs to H.

a. Consider the graph in the figure.

Which of the following sets form a hitting-set (circle all that apply)?

1. A,C,D

2. B,G
3. F,G

4. C,D,E,F
5. A,C,E

b. Consider the following algorithm that finds a hitting-set:

1. Sort the vertices in non-increasing order of their degree (first vertex has the maximal degree). Ties are broken arbitrarily.

2. Init H to be empty.

3. For every vertex, v, selected in sorted order (as produced in step 1), add v to H if v is not adjacent to any vertex in H.

b.1. What is the hitting-set produced by the above algorithm for the graph in the figure? If there is more than one possible answer, give one possible output, no need to explain.

b.2. Suggest an implementation to the above algorithm. Describe all the data structures you are using and explain how each of the steps is performed. No need to write pseudo-code. Analyze the time and space complexity of your algorithm, as a function of n=|V| and m=|E|. The more efficient your implementation is, the more points you are going to get.

Answer (sketch):

 1. Use adj. lists.
2. In O(m+n) (scanning the adj. lists) calculate the degrees, store them in
an array.
3. Use BUCKET SORT to sort the vertices according to degree (the max degree
is n, so the whole sort is O(n)). No need to use heap sort, or any other n
log n sort.
4. Initialize an indicator array with 0's (to denote if a vertex is in H).
5. Now step 3 can be performed in O(degree(v)) for any vertex v, (by
checking the indicator array of the neighbors, and update it if needed).
This sums up to a total O(n+m) (both time and space).
yes / no

16

15

9

5

3

15

9

5

3

15

3>2

8>1

9

5

yes / no

yes / no

B

yes / no

yes / no

2

3

C

G

A

3

5

3

E

F

D

5

2

3

