
CSE326 – Data Structures, Winter 2004 
Dry assignment #2 - Solutions 

 
Problem 1. 
The first interpretation one could make from reading the text of the problem is that IDs are distributed to 
customers ahead of time and they don’ t necessarily reflect the order of arrival of customers.  This is why 
cl i ent ( k)  is a needed function. 
 
The data structures to use are 2 arrays and 2 associated variables, one for each array.  Specifically: 
   var  cust omer Sequence[ N] :  ar r ay of  i nt eger ;   
      / *  t he el ement  wi t h i ndex k hol ds t he I D of  t he k- t h ar r i v i ng cust omer  * /  
   var  numCust omer sToDat e:  i nt eger ;   
      / *  hol ds t he l engt h of  t he ar r ay cust omer Sequence[ ]  * /  
   var  cust omer Tot al Pur chased[ N] :  ar r ay of  i nt eger ;  
      / *  hol ds t he t ot al  val ue of  goods pur chased by a cust omer  wi t h a gi ven I D * /  
   var  numPot ent i al Cust omer s:  i nt eger ;  
      / *  hol ds t he val ue t hat  i ni t ( )  passes i n;  i t  coul d be l ess t han N * /  
 
The space complexity of the data structure is indeed O(N) – the maximum number of elements each array can 
hold.  As far as time complexities, let us examine each function separately: 
- i ni t ( N)  – initializes numPot ent i al Cust omer s  to N, the starting length numCust omer sToDat e of the 
cust omer Sequence[ ]  array to 0, and initializes all N elements of the cust omer Tot al Pur chased[ ]  array to 
0 (since customers have not bought anything yet).  The time complexity of this operation is determined by the 
length of the arrays and is therefore O(N). 
- pur chase( i , x)  – adds x  to the value stored in cust omer Tot al Pur chased[ i ] , and if it was 0 before, 
increments by 1 the value of numCust omer sToDat e, and sets the value of 
cust omer Sequence[ numCust omer sToDat e]  to the ID i  of the customer.  The time complexity of this 
operations is O(1) – only assignments, comparisons, and conditionals are executed. 
- sum( i )  – returns the value of cust omer Tot al Pur chased[ i ] .  The time complexity here is clearly O(1). 
- cl i ent ( k)  – returns 0 if numCust omer sToDat e is 0 or if k is larger than numCust omer sToDat e.  
Otherwise, returns cust omer Sequence[ k] .  The time complexity here is O(1) too – only a comparison and a 
conditional are executed. 
 
One important assumption we made above is that array indices begin from 1, not 0.  (An adjustment of indices 
would be necessary if it were the other way round.) 
 
Note: It is necessary to have the numCustomersToDate counter for the purchase() function to be O(1) time in the 
case the customer is new. 
 
Problem 2. 
 
a) Here is how the adaptive linked list looks like after each step. 
Initial state:  header → 1 → 2 → 3 → 4 → 5 
After f i nd( 3) : header → 3 → 1 → 2 → 4 → 5 
After i nser t ( 6) : header → 6 → 3 → 1 → 2 → 4 → 5 
After del et e( 2) : header → 6 → 3 → 1 → 4 → 5 
After f i nd( 4) : header → 4 → 6 → 3 → 1 → 5 
 
b) It is typical that linked list-based implementations of i nser t ( )  or del et e( )  use the operation f i nd( )  as a 
core “building block.”   However, here it is convenient to do it the other way round, since f i nd( )  needs to not 
only find the element, but move it from its current position to the front of the list.  This moving to the front can 
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be accomplished either as a deletion from the old place in the list followed by an insertion to the front (which we 
will show in pseudocode below), or it can be done independently of i nser t ( )  and del et e( ) , essentially 
duplicating much of the functionality of these two routines.  The latter alternative is slightly more efficient in 
practice (i.e., the time complexity order remains the same, but the constants improve), but its drawback is that it 
fails to reuse functions that have already been built – often a highly desirable objective. 
 
i nser t  ( x:  i nt eger ;  l st :  l i st  poi nt er ) :  voi d 
{  
   var  t :  node;  
   t  = new node;  
   t . el em = x;  
   t . next  = l st . next ;  
   l st . next  = t ;  
}  
 
del et e ( x:  i nt eger ;  l st :  l i st  poi nt er ) :  i nt eger  
{  
   var  st at us:  i nt eger ;  
   st at us = NOT_FOUND;  
   whi l e ( NULL ! = l st . next )  
   {  
      i f  ( l st . next . el em ! = x)   / *  l ook f or  t he el ement  x;  move on i f  not  f ound * /  
         l st  = l st . next ;  
      el se                     / *  . . .  or  exi t  t he l oop i f  f ound                * /  
         br eak;  
   }  
   i f  ( NULL ! = l st . next )  / *  i f  x was f ound,  adj ust  poi nt er s and f r ee up memor y * /  
   {  
      var  t emp:  node;  
      t emp = l st . next ;  
      l st . next  = t emp. next ;  
      t emp. next  = NULL;  
      del et e( t emp) ;   / *  f r ees t he dynami cal l y al l oc’ d memor y t hat  t emp poi nt s t o * /  
      st at us = FOUND;  
   }  
   r et ur n ( st at us) ;   / *  t hi s st at us i s necessar y i n t he f i nd( )  met hod * /  
}  
 
f i nd ( x:  i nt eger ;  l st :  l i st  poi nt er ) :  i nt eger  
{  
   var  st at us:  i nt eger ;  
   st at us = del et e( x,  l st ) ;  / *  f i r st  del et e t he el ement  i f  i t ’ s i n t he l i st . . .   * /  
   i f  ( FOUND == st at us)  
      i nser t ( x,  l st ) ;        / *  . . .  t hen i nser t  i t ,  i f  i t  was i n t he l i st  bef or e * /  
   r et ur n ( st at us) ;  
}  
 
Note: Many of you did not do any error checking, e.g., accessing the contents of what a pointer points to without 
checking if it is NULL. 
 
c) We will show two similar ideas below. 
Idea 1: Let’s assume that f i nd( z)  occurs on operations op1, op2, …, opk/4, where { opi} i=1..k/4 is an ordered subset 
of the set { i} i=1..k.  (For instance, op1 = 1, op2 = 5, op3 = 6, opk/4 = k-3 is one such subset.) 
- The cost (i.e., the time complexity) of doing f i nd( z)  the very first time will be 
   costf i nd( z) , 1 = O(N), 
since the element z will need to be found in a linked list of N elements, and moved to the front of the list. 
- For j>1, the cost of doing f i nd( z)  for the jth time (i.e., on operation opj) will be 
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   costf i nd( z) , j  ≤ (opj – op(j-1)), 
since z was moved to the front of the list during the previous find (on operation op(j-1)), so it could have been 
pushed back by at most (opj – op(j-1)) different elements that have moved to the front between operations op(j-1) 
and opj.  Hence, one needs to traverse at most (opj – op(j-1)) elements to find z on operation opj.   
As the total time dedicated to f i nd( z)  across all k f i nd( )  operations will be the sum of the times that 
f i nd( z)  takes for each individual operation opi, from here we can write 
   total_costf i nd( z)  = costf i nd( z ) , 1 + Σj=2..k/4  costf i nd( z) , j  ≤ c1.N + Σj=2..k/4 (opj – op(j-1)) = 
     = c1.N + (op2 – op1) + (op3 – op2) + … + (opk/4 – op(k/4 - 1)) = c1.N + (opk/4 – op1) ≤ c1.N + k ≤  

   ≤ c2.k, 
since k = Ω(N).  Therefore, 
   average_costf i nd( z)  = total_costf i nd( z)  / (k/4) ≤ c2.k / (k/4) = 4c2 = O(1). 
 
Idea 2: A slightly more elegant, though perhaps more abstract, solution rests on the following observations (most 
of them already explained above): 

the first f i nd( z)  operation will take time O(N); 
each f i nd( y)  operation (for elements y ≠ z) pushes the z element by at most one position behind in the list; 
there are a total of 3k/4 f i nd( y)  operations, so the z element will have to “ travel”  at most a total of 3k/4 

positions back to the top of the list, regardless of how many steps at a time that may take. 
From here, the total time for f i nd( z)  will be at most (N + 3k/4).  Therefore, the average time becomes  
   (N + 3k/4) / k = N/k + 3/4 = O(1), 
since k = Ω(N). 
 
Problem 3. 
 

a. A Stack is an appropriate data structure. According to the rule (iii), the end symbols must be closed 
in reverse order. This rule reminds one of the Last-In-First-Out rule of stack. In addition, by using 
stack the validation-checking algorithm can be done not only in linear time, but in a single pass 
through the input.  

b.  
We will use the following variables/ADTs 

Stack:  stack ADT 
paren_ctr, square_ctr, brace_ctr: integers which are initialized to zero 

 
We do the following on reading each input. 
 
‘ (‘ : increment paren_ctr, push ‘ (‘  onto Stack 
‘ [‘ : increment square_ctr, push ‘ [‘  onto Stack 
‘ { ‘ : if square_ctr or paren_ctr is nonzero, report error (v), otherwise increment brace_ctr and push 

‘ { ‘  onto Stack 
‘ )’ : if paren_ctr is zero, report error (ii).  If Stack.Pop() is not ‘ (‘ , report error (iii).  Otherwise 

decrement parent_ctr. 
‘ ]’ : if square_ctr is zero, report error (ii).  If Stack.Pop() is not ‘ [‘ , report error (iii).  Otherwise 

decrement square_ctr. 
‘ } ’ : if brace_ctr is zero, report error (ii). if Stack.Pop() is not ‘ { ‘ , report error (iii).  Otherwise 

decrement brace_ctr. 
At the end of the input, if Stack is not empty, report error (i). 
 

c. For rule (i), if all the symbols paired up, the stack should be empty at the end of the input. 
For rule (ii), if there is a right symbol comes up with no left symbol in the previous positions, which 
means the counter of that symbol is zero, then the string is illegal. 
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For rule (iii), if the symbols are placed in the string with the right order, which means the right 
symbols are in the reverse order of  left symbols, then the right symbol will be paired up with the 
popped left symbol. Otherwise it is illegal, if it is not against rule (ii) then it is against rule(iii). 
Rule (iv) is implied by rule (iii). 
For rule (v), if the ‘ { ‘  comes up with no other symbol in front of it except itself, then the counter of 
the other two symbols should be zeros. Otherwise the string is illegal. 
 
In the assignment it was not necessary to distinguish between rules (ii) and (iii).  There was some 
confusion about this when grading, and announcement will be made to the class list. 
 

 


