
CSE373 – Data Structures and Algorithms 
Autumn 2003 

Dry assignment #4 – Solutions 
 
Problem 1.  
a. BuildHeap( ); 
Initial step: 

 -� � �� � � � � � �� 	 
 
Performing BuildHeap on node at index 5 – no change: 

-� � �� � � � � � �� 	 
 
Performing BuildHeap on node at index 4 – 5 percolates up a level: 

-� � �� � 	 � � � �� � 
 
Performing BuildHeap on node at index 3 – 1 percolates up a level: 

-� � �� � 	 � � � �� � 
 
Performing BuildHeap on node at index 2 – 2 percolates up a level: 

-� � � � 	 
 � � �� � �� 
Performing BuildHeap on node at index 1 – 1 percolates up a level – gives us the final state. 

-� � � � 	 
 � � �� � �� 
 
b. DeleteMin( ); 
Initial Step: 

-� � � � 	 
 � � �� � �� 
Replacing root (minimum element) with last element in heap: 

-� �� � � 	 
 � � �� �  
Percolating down from the root to maintain heap property – gives us the final state: 

-� � 	 � � 
 � � �� ��  
 
c. IncreaseKey (5, 7) 
Initial step: 

-� � 	 � � 
 � � �� ��  
Increasing value of node at index 5 by 7 (i.e., 7 + 7 = 14), and calling percolate down which has 
no effect – gives us the final state: 

-� � 	 � � �� � � �� ��  
 
d. Insert (1); 
Initial step: 

-� � 	 � � �� � � �� ��  
Checking if the element to insert can be inserted at the end of the array without violating the 
heap property.  If it does violate the heap property, percolate it up until it finds its place.  The 
(1?) denotes that this element is not yet inserted in this position, but we are checking if it can be 
inserted there:  

-� � 	 � � �� � � �� �� (1?) 
Percolating up element 1 – gives us the final state: 

-� � � � � 	 � � �� �� 14 
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e. Insert (6); 
Initial step: 
-� � � � � 	 � � �� �� ��  

Checking if the element to insert can be inserted at end of array without violating the heap 
property.  If it does violate the heap property, percolate it up until it finds its place.  The (6?) 
denotes that this element is not yet inserted in this position, but we are checking if it can be 
inserted there:  
-� � � � � 	 � � �� �� �� (6?) 

Inserting element 6 in the last position (it can go there) – gives us the final state: 
-� � � � � 	 � � �� �� ��   6 

 
Note: Some of you were using the -� as an actual element of the heap, which is not correct.  The 
heap starts at index 1.  
 
 
Problem 2.  
a) 
We will prove this by induction. 
Base case:  The binomial tree B1 has one root and one child.  The child (node) can be thought of 
as the binomial tree B0.  This satisfies the claim. 
Induction hypothesis:  Let’s assume that the claim is true for Bk, i.e., the binomial tree of size k 
has binomial trees B0, B1, …, Bk–1 as children of its root. 
Induction step:  Consider the binomial tree Bk+1.  By definition (see p.209 in the text) it consists 
of two binomial trees Bk, one of which Bk,2 is attached to the root of the other, Bk,1.  Therefore, 
by the induction hypothesis, Bk+1 already has B0, B1, …, Bk–1 attached to its root, since this is the 
same root that Bk,1 has.  In addition, Bk+1 also has Bk,2 attached to its root (by the definition).  
Hence Bk+1 has B0, B1, …, Bk–1, and Bk,2 all as children of its root.  But Bk,2 is a proper binomial 
tree of size k, which proves the claim. 
Because the claim was shown to be true for k = k0 = 1 (base case) and the assumption of its 
truthfulness for some k led to proving it for k+1 (the inductive step), we can conclude that the 
claim is true for all natural k ≥ k0. 
 
b) 
There are many ways to do this problem – the following is just one way.  
A binomial queue that holds the first 13 even numbers: 
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A binomial queue that holds the first 7 even numbers: 
 

 
After merging the two binomial queues above, one possible result is: 
 

 
Problem 3 
a.  
Check all pairs: 

 
for i=1 to n-1 
     for j = i+1 to n 
         If (a[i]+a[j] =s) return ‘yes’  
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Return ‘no’  
 
Every pair is checked, the number of iterations is (n-1)+(n-2)+...+1 = O(n2). Each iteration is 
O(1). The space comp. is O(1) since only two variables (i,j) are needed. 
 
b. 

Allocate a hash-table of size m where m=O(n). 
Select a hash-function and a collision-handle strategy (any can do). 
for i = 1 to n do 
 search for (s-a[i]) in the hash-table 
 if find then return ‘yes’  
            else insert a[i] into the hash table. 
return ‘no’  
 

Time complexity: Each element is inserted once, and causes one ‘search’  operation. So the total 
number of hash-operations is at most 2n, each takes on average O(1), which gives a total of O(n).  
Space complexity: O(n) – a reasonable size for the hash-table is about 2n. 

 
Note: If you first insert all the elements into a hash-table, and then go through the array and 
search for (s-a[i]) (for each i), you have to pay attention not to say ‘yes’  if s=2*a[i]. In this case 
you have to search for two elements with value a[i].  
 
 
Problem 4   
4.1. (iii) Two possible insertion orders which result in the same contents of the hash table are 
12→13→26→25→8→21→9 and 8→21→9→12→13→26→25.  In one of them 25 comes last 
while in the other it does not, therefore the answer is (iii).  To get a better idea of how we 
obtained those sequences see the (related) answer to 5.2. 
4.2. (i) Since 25 mod 13 = 12, the original slot number 25 attempts to occupy is 12.  Since 25 is 
not in slot 12, that slot must have been occupied already and a collision must have occurred.  The 
specific linear probing used to resolve collisions suggests that the next slots (in that order) that 
25 would attempt are 0, 1, 2, and so on, until either an empty slot is discovered or the hash table 
is found to be full.  Since element 25 is not in slots 0 or 1 either, those two slots must also have 
been occupied prior to its arrival, while slot 2 must have been empty.  Therefore, at least the 
(three) slots 12, 0, and 1 must have been occupied at the time of the arrival of 25.  Hence at least 
three numbers were inserted prior to 25. 
4.3. (iii) Two possible insertion orders are …8→12… and …12→8…  Since both numbers 
occupy their original slots (8 and 12, respectively), there must have been no collisions on the 
insertion of either.  Therefore, they could have come in any order with respect to each other; 
hence the answer is (iii). 
4.4. (ii) Since 8 mod 13 = 8 and 21 mod 13 = 8 too, upon entry in the hash table both numbers 8 
and 21 would first attempt to fill in slot 8.  Apparently 8 succeeded, which means that it came 
before 21.  If we assume that 9 was inserted before 8, from the fact that 8 preceded 21 it wil l 
follow (by transitivity) that 9 preceded 21.  (* ) 
However, 9 mod 13 = 9, so the original slot that number 9 would attempt to occupy is 9.  Since 
21 actually occupies slot 9, it must have arrived before number 9, which leads to a contradiction 
with (* ).  The reason for the contradiction must be the incorrect assumption we made earlier – 
that 9 was inserted before 8.  Therefore, no insertion order (that produces the current hash table’s 
contents) could have had 9 precede 8; hence the answer is (ii). 
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Note: We assume that the only operations that led from an empty hash table to its current 
contents were insertions from the given set of 7 elements.  If there were deletions (especially of 
elements not from that set) too, some of the above arguments would need to be more 
complicated and the answers would likely differ. 
 
Problem 5. 
 
In a topological sort we need to start with vertices that have no incoming edges.  These 
correspond to columns in the adjacency matrix M that have all values equal to 0. 
In our case, both vertices E and F are appropriate starting points.  Let us choose them in this 
order: E, then F.  Removing the corresponding rows and columns for E and F we now have to 
solve the same problem, only on a smaller matrix (graph). 
The removal of the rows E and F resulted in column A now consisting of all 0’s.  We therefore 
choose A as the next vertex and remove its corresponding row and column. 
Continuing in the same fashion, we pick vertex B next, followed by C and finally by D. 
Therefore, the topological sort yielded the following sequence of vertices: E, F, A, B, C, D. 
 
 


