CSE 326 – Data Structures Winter 2004 Dry assignment #1.

Due date: 1/16/04 (see submission instructions in course web-page).

1. Let $T_{bar}(n)$ define the time complexity, as a function of n, of executing bar(n), and let $T_{foo}(n)$ define the time complexity, as a function of n, of executing foo(n).

<pre>foo(n : integer): void { m: integer; m := n * n * n; bar(m); }</pre>	<pre>bar(k: integer):void { if (k <= 1) return; print("X"); bar(k / 2); }</pre>	
Complete: $T_{bar}(n) = \Theta($)	
$T_{foo}(n) = \Theta($)	

Explain your answers.

2. For each of the following questions, briefly explain your answer.

a. If I prove that an algorithm takes $O(n^2)$ worst-case time, is it possible that it takes O(n) on some inputs?

b. If I prove that an algorithm takes $O(n^2)$ worst-case time, is it possible that it takes O(n) on all inputs?

c. If I prove that an algorithm takes $\Theta(n^2)$ worst-case time, is it possible that it takes O(n) on some inputs?

d. If I prove that an algorithm takes $\Theta(n^2)$ worst-case time, is it possible that it takes O(n) on all inputs?

3. Write (in pseudocode) a recursive function 'MaxPair' that gets an array a[] of integers and its size n (it is known that n>1), and returns the maximal sum of two consecutive

elements in a[] (that is $Max(a[j-1]+a[j]: 1 \le j \le n-1$). You are not allowed to use loops in your solution.

What is the time and space complexity?

4. A 'frame matrix' is an N*N matrix in which all the values along the same frame are identical. For example, the matrix below is a 5*5 frame matrix.

7	7	7	7	7
7	14	14	14	7
7	14	-9	14	7
7	14	14	14	7
7	7	7	7	7

Suggest a data structure for storing a frame matrix, whose space complexity is O(N) (for an N*N frame matrix with N² elements). Using your suggested data structure, implement (write in pseudo-code) the following operations; each should have time complexity O(1):

get(i,j) returns the value of the element whose location is (i,j).

put(i,j,x) – set the value x at location (i,j) AND in all the locations in the frame to which (i,j) belongs, in a way that the resulting matrix is still a frame matrix.

5. t is a linked list. What is the result of executing rec_func(t) (defined below)? What is its time and space complexity? Explain briefly.

```
rec_funcl(t node_pointer, r node_pointer): node_pointer
{
    tail node_pointer;
    if (t = NULL) return r;
    tail := t.next;
    t.next := r;
    return rec_funcl(tail, t);
}
rec_func(t node_pointer): node_pointer
{
    return rec_funcl(t, NULL);
}
```