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Java Collections Overview
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The Collections Framework

• Started with Java 1.2
• Numerous classes for common data structures
• Consistent interfaces
• Common algorithms
• Iterators
• All are in package java.util
• Convenient, interoperable
• Conversion to/from arrays 
• Easily extendable
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Major Interfaces

• Collection

• List
– LinkedList, ArrayList implementations

• Map
– HashMap, TreeMap implementations

• Set
– HastSet, TreeSet implementations
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Interface Collection

• All lists and sets are subtypes

• Interface methods: add, clear, contains, get, 
remove, set, size, toArray

• All collections store and return Objects
– Must cast to specific actual type before using

– Can’t store elementary values (ints, chars, etc.) without 
wrapping (Integer, Character, etc.)

– Unlike arrays, where the contents type is declared

– Fix coming in Java 1.5.
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Lists

• Sequential access to data
– elements have an integer index

• Interface List

• Abstract classe AbstractList

• Concrete classes ArrayList, LinkedList
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Sets

• Duplicates automatically eliminated 
(.equals)

• Subtype (interface) SortedSet maintains an 
order

• Concrete implementations: HashSet, 
TreeSet
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equals

• Many collections methods depend on equals
– duplicate checking, containment checking, etc.

• Objects stored in collection need a proper 
equals
– reflexive

– symmetric

– transitive
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compareTo

• Many situations depend on a proper 
compareTo method

• Signaled by Comparable interface

• Should be 
– reflexive

– transitive

– anti-symmetric
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Iterators

• iterator: an object that identifies a position within 
a collection

• All collection classes support iterators
– List iterators: will follow index order

– Other iterators: either no order guaranteed, or class-
dependent

• Interface Iterator
– Concrete inner classes usually not visible to user
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Maps

• Map: association between key and value
• Main operations

– put (key, value)
– get(key) returns value

• Maps per se do not implement the 
Collections interface

• Can get Collections (Set) of the keys and 
values separately
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Problem-Solving with 
Collections

• "Unique" -- think sets

• "Properties" -- think maps

• "Order" -- think Comparable and sorting
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Generic Algorithms

• Class Collections
– not to be confused with Collection

– handy static methods

• Collections.sort(List)

• Collections.binarySearch(List)

• Collections.copy ...
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Interoperability

• Via common methods of the interfaces

• Via addAll method
– mycollectionobject.addAll(existingCollection)

• Via constructor
– List myList = new ArrayList(existingCollection)
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Interoperability Advice

• Advice: use the most general type possible
• Example: instead of 
ArrayList myList = new ArrayList( );
consider List myList = new ArrayList( );
or even Collection myList = new ArrayList( );
• Example: instead of
LinkedList myOperation(HashSet s);
consider Collection myOperation(Collection s);
not always possible
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Arrays

• Class Arrays has handy methods

• .sort, etc

• Interoperating between arrays and 
collections
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Wrapped Collections (Views)

• Unmodifiable (Read-only)
– Protects the collection structure, not the object contents

– Created by Collections factory methods

example:

Set myReadOnlySet = 
Collections.unmodifiableSet(mySet); 

• Synchronized
– Safe simultaneous access to an object

– Needed for multi-thread programming
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Generics

• Coming in Java 1.5

• Types as parameters

• Can specify the types of the objects stored 
in the collections

• Greater type-safety

• Eliminates annoying casts
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Summary

• Java 1.2 and above has numerous useful 
collections facilities

• Great programming convenience

• Get familiar with them!


