
1

6/30/2004 1

Java Collections Overview

6/30/2004 2

The Collections Framework

• Started with Java 1.2
• Numerous classes for common data structures
• Consistent interfaces
• Common algorithms
• Iterators
• All are in package java.util
• Convenient, interoperable
• Conversion to/from arrays
• Easily extendable

6/30/2004 3

Major Interfaces

• Collection

• List
– LinkedList, ArrayList implementations

• Map
– HashMap, TreeMap implementations

• Set
– HastSet, TreeSet implementations

6/30/2004 4

Interface Collection

• All lists and sets are subtypes

• Interface methods: add, clear, contains, get,
remove, set, size, toArray

• All collections store and return Objects
– Must cast to specific actual type before using

– Can’t store elementary values (ints, chars, etc.) without
wrapping (Integer, Character, etc.)

– Unlike arrays, where the contents type is declared

– Fix coming in Java 1.5.

2

6/30/2004 5

Lists

• Sequential access to data
– elements have an integer index

• Interface List

• Abstract classe AbstractList

• Concrete classes ArrayList, LinkedList

6/30/2004 6

Sets

• Duplicates automatically eliminated
(.equals)

• Subtype (interface) SortedSet maintains an
order

• Concrete implementations: HashSet,
TreeSet

6/30/2004 7

equals

• Many collections methods depend on equals
– duplicate checking, containment checking, etc.

• Objects stored in collection need a proper
equals
– reflexive

– symmetric

– transitive

6/30/2004 8

compareTo

• Many situations depend on a proper
compareTo method

• Signaled by Comparable interface

• Should be
– reflexive

– transitive

– anti-symmetric

3

6/30/2004 9

Iterators

• iterator: an object that identifies a position within
a collection

• All collection classes support iterators
– List iterators: will follow index order

– Other iterators: either no order guaranteed, or class-
dependent

• Interface Iterator
– Concrete inner classes usually not visible to user

6/30/2004 10

Maps

• Map: association between key and value
• Main operations

– put (key, value)
– get(key) returns value

• Maps per se do not implement the
Collections interface

• Can get Collections (Set) of the keys and
values separately

6/30/2004 11

Problem-Solving with
Collections

• "Unique" -- think sets

• "Properties" -- think maps

• "Order" -- think Comparable and sorting

6/30/2004 12

Generic Algorithms

• Class Collections
– not to be confused with Collection

– handy static methods

• Collections.sort(List)

• Collections.binarySearch(List)

• Collections.copy ...

4

6/30/2004 13

Interoperability

• Via common methods of the interfaces

• Via addAll method
– mycollectionobject.addAll(existingCollection)

• Via constructor
– List myList = new ArrayList(existingCollection)

6/30/2004 14

Interoperability Advice

• Advice: use the most general type possible
• Example: instead of
ArrayList myList = new ArrayList();
consider List myList = new ArrayList();
or even Collection myList = new ArrayList();
• Example: instead of
LinkedList myOperation(HashSet s);
consider Collection myOperation(Collection s);
not always possible

6/30/2004 15

Arrays

• Class Arrays has handy methods

• .sort, etc

• Interoperating between arrays and
collections

6/30/2004 16

Wrapped Collections (Views)

• Unmodifiable (Read-only)
– Protects the collection structure, not the object contents

– Created by Collections factory methods

example:

Set myReadOnlySet =
Collections.unmodifiableSet(mySet);

• Synchronized
– Safe simultaneous access to an object

– Needed for multi-thread programming

5

6/30/2004 17

Generics

• Coming in Java 1.5

• Types as parameters

• Can specify the types of the objects stored
in the collections

• Greater type-safety

• Eliminates annoying casts

6/30/2004 18

Summary

• Java 1.2 and above has numerous useful
collections facilities

• Great programming convenience

• Get familiar with them!

