
1R. Rao, CSE 326

CSE 326 Lecture 9: Splay Trees and B-Trees

✦ What’s on our plate today?
➭Splaying: Examples and Run Time Analysis
➭B-Trees
➧ Insert/Delete Examples and Run Time Analysis

➭ Introduction to Heaps and Priority Queues

✦ Covered in Chapters 4 and 6 in the text

2R. Rao, CSE 326

Splay trees are binary search trees that:

1. Are not perfectly balanced all the time
2. Allow each access to a node to balance the tree so that

future operations may run faster

- After node X is accessed, perform “splaying” operations to
bring X up to the root using rotations.

- Side Effect: Tends to leave the tree more balanced.

- Net Result: Can prove that average (amortized) run time
= O(log N) per access over a sequence of ADT operations

Splay Trees Recap

Main Ideas:

3R. Rao, CSE 326

1. Nodes must contain a parent pointer.

element left right parent

2. When X is accessed, apply one of six rotation operations:
• Single Rotations (X has a Parent but no Grandparent)

• Double Rotations (X has both a Parent and a Grandparent)

• zig-left, zig-right

• zig-zig-left, zig-zig-right
• zig-zag-left, zig-zag-right

Splay Tree Node and Splay Z/ZZ Operations

4R. Rao, CSE 326

Zig-Right

✦ “Zig-Right” is just a single right rotation, as in an AVL tree

✦ Suppose R was the node that was accessed (e.g. using Find)

✦ Zig-right moves R to the top can access R faster next time

Zig-right

5R. Rao, CSE 326

Zig-Left

✦ Suppose Q is accessed (e.g. using Find)

✦ Zig-left is a single left rotation: moves Q to the top

Zig-left

6R. Rao, CSE 326

Zig-Zig

✦ “Zig-Zig” consists of two single rotations of the same type
(assume R is the node that was accessed):

✦ Note: Parent-Grandparent rotated first

✦ Zig-Zig Left is just Zig-Left followed by Zig-Left

(Zig-right) (Zig-right)

Zig Zig

7R. Rao, CSE 326

Zig-Zag

✦ “Zig-Zag” consists of two rotations of the opposite type
(assume R is the node that was accessed):

✦ Note: R and Parent rotated first, R and Grandparent next

✦ The other Zig-Zag is just Zig-Right followed by Zig-Left

(Zig-left) (Zig-right)

Zig Zag

8R. Rao, CSE 326

Splay Trees: Example

9R. Rao, CSE 326

Splaying during Other Operations

✦ Splaying can be done not just after Find, but also after other
ADT operations such as Insert/Delete.

✦ Insert X: After inserting X at a leaf node (as in a regular
BST), splay X up to the root

✦ Delete X: Do a Find on X and get X up to the root. Delete X
at the root and move the largest item in its left subtree to the
root using splaying.

✦ Note on Find X: If X was not found, splay the leaf node that
the Find ended up with to the root.

10R. Rao, CSE 326

Examples suggest that splaying causes tree to get balanced.
The actual analysis is rather advanced and is in Chapter 11.

Result of Analysis: Any sequence of M operations on a splay
tree of size N takes O(M log N) time.

So, the amortized running time for one operation is O(log N).

This guarantees that even if depths of some nodes get very
large, you cannot get a long sequence of O(N) operations.

Without splaying, total time could be O(MN).

Analysis of Splay Trees: Amortization

11R. Rao, CSE 326

✦ “B-tree” of order 3: Tree has 2 or 3 children per node

✦ Example: Search for 8

Beyond Binary Search Trees: Multi-Way Trees

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-
Keys

Data

12R. Rao, CSE 326

B-Trees are multi-way search trees commonly used in
database systems or other applications where data is stored
externally on disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:

1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between M/2

and M children.
3. All leaves are at the same depth.

All data records are stored at the leaves.
Leaves store between L/2 and L data records.
L depends on disk block size and data record size (e.g. L = M).

B-Trees

13R. Rao, CSE 326

B-Tree Details

Each internal node of a B-tree has:
➭ Between M/2 and M children.
➭ up to M-1 keys k1 < k2 < ... < kM-1

Keys are ordered so that:
k1 < k2 < ... < kM-1

kM-1. ki-1 kik1

14R. Rao, CSE 326

Properties of B-Trees

Children of each internal node are "between" the items in that node.
Suppose subtree Ti is the ith child of the node:

All keys in Ti must be between ki-1 and ki

i.e. ki-1 ≤ Ti < ki

ki-1 is the smallest key in Ti
All keys in first subtree T1 < k1

All keys in last subtree TM ≥ kM-1

k1

T
i

.ki-1 ki

T
MT

1

k M-1

.

15R. Rao, CSE 326

B-trees Example

13:-

6:11

3 4 6 7 8 11 12 13 14 17 18

17:-

✦ B-tree of order 3: also known as 2-3 tree (2 to 3 children)

✦ Apply B-tree definition for order M = 3 and L = M = 3
➭ Each node must have at least M/2 = 2 and at most M =

3 children
➭ Leaves store between M/2 = 2 and M = 3 data records

- means empty slot

16R. Rao, CSE 326

Inserting Items in B-Trees

✦ Insert X: Do a Find on X and find appropriate leaf node
➭ If leaf node is not full, fill in empty slot with X.

E.g. Insert 5 in the tree below
➭ If leaf node is full, split leaf node and adjust parents up to

root node. E.g. Insert 9 in the tree below

13:-

6:11

3 4 - 6 7 8 11 12 - 13 14 - 17 18 -

17:-

17R. Rao, CSE 326

Deleting Items in B-Trees

✦ Delete X: Do a Find on X and delete value from leaf node
➭May have to combine leaf nodes and adjust parents up to

root node if number of data items falls below M/2 = 2
E.g. Delete 17 in the tree below

13:-

6:11

3 4 - 6 7 8 11 12 - 13 14 - 17 18 -

17:-

18R. Rao, CSE 326

Run Time Analysis of B-Tree Operations

✦ For a B-Tree of order M
1. Each internal node has up to M-1 keys to search
2. Each internal node has between M/2 and M children

i.e. Depth of B-Tree storing N data items is O(log M/2 N)
(Why? Hint: Draw a B-tree with minimum children at
each node. Count its leaves as a function of depth)

✦ Find: Run time is:
O(log M) to binary search which branch to take at each node
Total time to find an item is O(depth*log M) = O(log N)

19R. Rao, CSE 326

What about Insert/Delete?

✦ For a B-Tree of order M
Depth of B-Tree storing N items is O(log M/2 N)

✦ Insert and Delete: Run time is:
➭ O(M) to handle splitting or combining keys in nodes
➭ Total time is O(depth*M) = O((log N/log M/2)*M)

= O((M/log M)*log N)

✦ Tree in internal memory M = 3 or 4

✦ Tree on Disk M = 32 to 256. Interior and leaf nodes fit on
1 disk block.
➭ Depth = 2 or 3 allows very fast access to data in large

databases.

20R. Rao, CSE 326

Summary of Search Trees

✦ Problem with Search Trees: Must keep tree balanced to allow

fast access to stored items

✦ AVL trees: Insert/Delete operations keep tree balanced

✦ Splay trees: Sequence of operations produces balanced trees

✦ Multi-way search trees (e.g. B-Trees): More than two children

per node allows shallow trees; all leaves are at the same depth

keeping tree balanced at all times

21R. Rao, CSE 326

Next Class:

Heaps on Heaps

To Do:

Read Chapter 6

Homework # 2 (due this Friday)

