
1R. Rao, CSE 326

CSE 373 Lecture 5: Lists, Stacks, and Queues

✦ We will review:
➭ Stack ADT and applications
➭ Queue ADT and applications
➭ Introduction to Trees

✦ Covered in Chapters 3 and 4 in the text

2R. Rao, CSE 326

Stacks

✦ Stack ADT: Same as List except Insert/Delete allowed only
at the beginning of the list (the top of the stack).
➭ Both operations now take O(1) time!

✦ “LIFO” – Last in, First out

✦ Push: Insert element at top

✦ Pop: Delete (and optionally return)
the top element

3R. Rao, CSE 326

Stack ADT

✦ Operations:
➭ push(Object x) // Insert item at top of stack
➭ pop() // Remove topmost item from stack
➭ top() // Return topmost item without altering stack
➭ topAndPop () // Return and remove topmost item from stack
➭ isEmpty() // Return TRUE if stack is empty
➭ MakeEmpty() // Make stack empty

✦ Implementations:
➭ Linked list with Header, Header’s Next points to top of stack
➭ Array-based: Pre-allocate array; top is Array[TopofStack]

➧ Push x: Increment TopofStack; set Array[TopofStack] = x

✦ Run time for each of these operations?

4R. Rao, CSE 326

Stack ADT

✦ Operations:
➭ push(Object x) // Insert item at top of stack
➭ pop() // Remove topmost item from stack
➭ top() // Return topmost item without altering stack
➭ topAndPop () // Return and remove topmost item from stack
➭ isEmpty() // Return TRUE if stack is empty
➭ MakeEmpty() // Make stack empty

✦ Run time: All operations are O(1) (except MakeEmpty for
Linked List implementation which takes Θ(N))

Go through the Java/C++ code
for these in your text

5R. Rao, CSE 326

Applications of Stacks I: Compilers/Word Processors

✦ Compilers and Word Processors: Balancing symbols
➭ E.g. 2*(i + 5*(17 – j/(6*k)) is not balanced – “)” is missing

✦ In-Class Exercise: Write a Balance-Checker using Stacks
and analyze its running time.

((((

))

6R. Rao, CSE 326

✦ Balance-Checker using Stacks:
1. Make an empty stack and start reading symbols
2. If input is an opening symbol, Push onto stack
3. If input is a closing symbol:

If stack is empty, report error
Else

Pop the stack
Report error if popped symbol is not a matching open
symbol

4. If End-of-File and stack is not empty, report error

✦ Run time for N symbols in the input text: O(N)

Applications of Stacks I: Compilers/Word Processors

7R. Rao, CSE 326

Applications of Stacks II: Function Calls

✦ Handling function calls in programming languages
➭ E.g. Two functions f and g calling each other: Need to store current

environment (input parameters, local variables, address to return to, etc.)
function f(int x, int y) {

int a;
if (term_cond) return …;
a = ….;
return g(a);
}

function g(int z) {
int p, q;
p = …. ; q = …. ;
return f(p,q);
} Current environment (Top)

8R. Rao, CSE 326

A New Twist to Lists: Queues

✦ Queue = List ADT with inserts only at one end and deletes
only at other end

✦ Queues are “FIFO” – first in, first out

✦ Instead of Push and Pop, we have Enqueue and Dequeue

✦ Applications?

✦ Why not just use stacks?

9R. Rao, CSE 326

A New Twist to Lists: Queues

✦ Queue = List ADT with inserts only at one end and deletes
only at other end

✦ Queues are “FIFO” – first in, first out

✦ Instead of Push and Pop, we have Enqueue and Dequeue

✦ Applications? Why not just use stacks?
➭ Items can get buried in stacks and not appear at the top

for a long time – “not fair to old items”
➭ A queue ensures “fairness”. For example:
➧ Callers waiting on a customer hotline
➧ Jobs sent to a printer, etc.

10R. Rao, CSE 326

Queue ADT

✦ Operations:
➭ Enqueue(Object x) // Insert item at the back of the list
➭ Dequeue() // Delete and return front item in list
➭ getFront() // Return front item in list
➭ IsEmpty() // Return TRUE if queue is empty
➭ isFull() // Return TRUE if queue is full
➭ MakeEmpty() // Make Queue empty

✦ Implementations:
➭ Linked list implementation is natural

➧ What pointers do you need to keep track of for O(1)
implementation of Enqueue and Dequeue?

11R. Rao, CSE 326

Queue Implementations: Linked List

✦ Implementations:
➭ Linked list implementation is natural

➭What pointers do you need to keep track of for O(1)
implementation of Enqueue and Dequeue?

12R. Rao, CSE 326

Queue Implementations: Linked List

✦ Implementations:
➭ Linked list implementation is natural

➭What pointers do you need to keep track of for O(1)
implementation of Enqueue and Dequeue?

Front Back

13R. Rao, CSE 326

Queue Implementations: Array-Based

✦ Implementations:
➭ Array-based: can use List operations Insert and Delete,

but O(N) time for Dequeue

✦ How can you make array-based Enqueue and
Dequeue O(1) time?

A _ N…A _ 4A _ 3A_2A_1

MAXN-1�3210

Enqueue (Insert)Dequeue (Delete)

14R. Rao, CSE 326

Queue Implementations: Array-Based

✦ Array-based Enqueue and Dequeue in O(1) time:
➭ Use Front and Back indices
➧ Enqueue x: increment Back and set Array[Back] = x
➧ Dequeue: return Array[Front] and increment Front

➭ To make full use of available space (due to Dequeues):
➧ Wrap around Front/Back to 0 after MAX
➧ Circular array implementation

A _ N…A _ 4A _ 3A_2A_1

MAXN-1�3210

Front Back

15R. Rao, CSE 326

Applications of Queues

✦ File servers: Users needing access to their files on a shared
file server machine are given access on a FIFO basis

✦ Printer Queue: Jobs submitted to a printer are printed in
order of arrival

✦ Phone calls made to customer service hotlines are usually
placed in a queue

✦ Expected wait-time of real-life queues such as customers on
phone lines may be too hard to solve analytically use
queue ADT for simulating real-life queues

16R. Rao, CSE 326

Queues are for
commoners…pray tell,

how does a prince
represent his royal
family hierarchy?

17R. Rao, CSE 326

Storing Hierarchical Information

✦ Lists, Stacks, and Queues represent linear sequences

✦ Data often contain hierarchical relationships that
cannot be expressed as a linear ordering
➭ File directories or folders on your computer
➭Moves in a game
➭ Employee hierarchies in organizations and companies
➭ Classification hierarchies (e.g. phylum, family, genus,

species)
➭ Family trees

18R. Rao, CSE 326

19R. Rao, CSE 326

Tree Jargon

✦ Basic terminology:

• nodes and edges
• root
• subtrees
• parent
• children, siblings
• leaves
• path
• ancestors
• descendants
• path length

A

B C D

E F

Note: Arrows denote directed edges
Trees always contain directed edges
but arrows are often omitted.

20R. Rao, CSE 326

More Tree Jargon

✦ Length of a path =
number of edges

✦ Depth of a node N =
length of path from
root to N

✦ Height of node N =
length of longest path
from N to a leaf

✦ Depth and height of
tree = ?

A

B C D

E F

depth=0, height = 2

depth = 2, height=0

21R. Rao, CSE 326

Definition and Tree Trivia

✦ Recursive Definition of a Tree:
A tree is a set of nodes that is either:

a. an empty set of nodes, or
b. has one node called the root from which zero or more

trees (“subtrees”) descend.

✦ A tree with N nodes always has ___ edges

✦ Two nodes in a tree have at most ___ paths between them?

✦ Can a non-zero path from node N reach node N again?

✦ Does depth of nodes in a non-zero path increase or decrease?

22R. Rao, CSE 326

Definition and Tree Trivia

✦ Recursive Definition of a Tree:
A tree is a set of nodes that is either:

a. an empty set of nodes, or
b. has one node called the root from which zero or more

trees (“subtrees”) descend.

✦ A tree with N nodes always has N-1 edges

✦ Two nodes in a tree have at most one path between them

✦ Can a non-zero path from node N reach node N again?
➭ No! Trees can never have cycles.

✦ Does depth of nodes in a non-zero path increase or decrease?
➭ Depth always increases in a non-zero path

23R. Rao, CSE 326

Implementation of Trees: The Obvious

✦ Obvious Implementation: Node with value and links to
children

✦ Problem: Do not know number of children for each node in
advance. Wastes space if maximum number of links assumed.

A

B C D

E F

A

C

24R. Rao, CSE 326

Implementation of Trees: 1st Child/Next Sib

✦ Better Implementation: 1st Child/Next Sibling Representation
➭ Each node has 2 pointers: one to its first child and one to

next sibling
➭ Can handle arbitrary number of children
➭ Exercise: Draw the representation for this tree…

A

B C D

E F

25R. Rao, CSE 326

Implementation of Trees: 1st Child/Next Sib

✦ Better Implementation: 1st Child/Next Sibling Representation
➭ Each node has 2 pointers: one to its first child and one to

next sibling
➭ Can handle arbitrary number of children
➭ Exercise: Draw the representation for this tree…

A

B C D

E F

A

B C D

E F

26R. Rao, CSE 326

Example Arithmetic Expression:

A + (B * (C / D))

How would you express this as a tree?

Applications I: Arithmetic Expression Trees

27R. Rao, CSE 326

Example Arithmetic Expression:

A + (B * (C / D))

Tree for the above expression:

Applications I: Arithmetic Expression Trees

+

A *

B /

C D

• Used in most compilers
• No parenthesis need – use tree structure
• Can speed up calculations e.g. replace

/ node with C/D if C and D are known
• Calculate by traversing tree (how?)

28R. Rao, CSE 326

Traversing Trees

✦ Preorder: Root, then Children
+ A * B / C D

✦ Postorder: Children, then Root
A B C D / * +

✦ Inorder: Left child, Root, Right child
A + B * C / D

+

A *

B /

C D

29R. Rao, CSE 326

Next class:

Gardening 101: How to take care of your (binary) trees

To do:

Finish Homework no. 1 (due Wednesday, Jan 22)

Finish reading Chapter 3

Read Chapter 4

