CSE 373 Lecture 5: Lists, Stacks, and Queues

+ Wewill review:
< Stack ADT and applications
< Queue ADT and applications
< Introduction to Trees

4+ Covered in Chapters 3 and 4 in the text

R. Reo, CSE 326

Stacks

+ Stack ADT: Same as List except Insert/Delete allowed only
at the beginning of the list (the top of the stack).
< Both operations now take O(1) time!

+ “LIFO” —Last in, First out

Push

+ Push: Insert element &t top

+ Pop: Delete (and optionally return)
the top element

el

R. Reo, CSE 326

Stack ADT

+ Operations:
< push(Object x)
< pop()
> top()
< topAndPop ()
< isEmpty()
< MakeEmpty()

+ Implementations:

/I Insert item at top of stack

// Remove topmoast item from stack

// Return topmost item without altering stack
// Return and remove topmost item from stack
// Return TRUE if stack is empty

/I Make stack empty

< Linked list with Header, Header’ s Next points to top of stack
< Array-based: Pre-allocate array; top is Array[TopofStack]
» Push x: Increment TopofStack; set Array[TopofStack] = x

+ Run time for each of these operations?

R. Reo, CSE 326 3
Go through the Java/C++ code
for thesein your text
Stack ADT <
1 oy
+ Operations:

< push(Object x)
=~ pop()

< top()

< topAndPop ()
< isEmpty()

< MakeEmpty()

/I Insert item at top of stack

// Remove topmoast item from stack
// Return topmost item without altering stack
// Return and remove topmost item from stack
// Return TRUE if stack is empty

/I Make stack empty

+ Runtime All operations are O(1) (except MakeEmpty for
Linked List implementation which takes ®(N))

R. Reo, CSE 326

Applications of Stacks I: Compilers’/Word Processors

+ Compilers and Word Processors. Balancing symbols
< E.g. 2*(i + 5 (17 —j/(6*k)) isnot balanced —“)” ismissing

+ In-Class Exercise: Write a Balance-Checker using Stacks
and analyze its running time.

®)

R. Rao, CSE 326 5

Applications of Stacks I: Compilers’/Word Processors

+ Balance-Checker using Stacks:
1. Make an empty stack and start reading symbols
2. If input is an opening symbol, Push onto stack
3. If input is aclosing symbol:
If stack is empty, report error
Else
Pop the stack
Report error if popped symbol is not a matching open
symbol
4. 1If End-of-File and stack is not empty, report error

+ Runtimefor N symbolsin the input text: O(N)

R. Rao, CSE 326 6

Applications of Stacks II: Function Calls

+ Handling function calls in programming languages
< E.g. Two functions £ and g calling each other: Need to store current
environment (input parameters, local variables, address to return to, etc.)

function f£(int x, int y) { Stack X
[
int a; ¥ parameters
\ fzrrnfe """""" return address
if (term cond) return ..; | ™" L. tooa | variables
B = i z parameters
return g(a); Stack [°°7°7°T7T7CC return address
} ffrg:r: """ g """ kocal variables
function g(int z) { X
. Stack ¥ parameters
int p, q; fsze """""" return address
P=. i Qq=..; AR b T local variables
return £ (p,q); -~
Current environment (Top)
R. Reo, CSE 326 7

A New Twist to Lists: Queues

+ Queue=List ADT with inserts only at one end and deletes
only at other end

+ Queues are “FIFQ” —firgt in, first out

+ Instead of Push and Pop, we have Enqueue and Dequeue

+ Applications?
+ Why not just use stacks?

R. Rao, CSE 326 8

A New Twist to Lists: Queues

+ Queue = List ADT with inserts only at one end and deletes
only at other end

+ Queuesare “FIFQ” —firgt in, first out
+ Instead of Push and Pop, we have Enqueue and Dequeue

+ Applications? Why not just use stacks?
< Items can get buried in stacks and not appear a the top
for along time — “not fair to old items”
< A queue ensures “fairness’. For example:
» Callers waiting on a customer hotline
» Jobs sent to a printer, etc.

R. Reo, CSE 326 9
Queue ADT
+ Operations:

< Enqueue(Object x) // Insert item at the back of the list

< Dequeue() /I Delete and return front itemin list

< getFront() /l Return front itemin list

< IsEmpty() /l Return TRUE if queueis empty

< iskull() // Return TRUE if queueis full

<& MakeEmpty() /I Make Queue empty

+ Implementations:
< Linked list implementation is natural
» What pointers do you need to keep track of for O(1)
implementation of Enqueue and Dequeue?

R. Rao, CSE 326 10

Queue Implementations: Linked List

+ Implementations:
< Linked list implementation is natural

< What pointers do you need to keep track of for O(1)
implementation of Enqueue and Dequeue?

—{[e}-> e} [ef> o]

R. Reo, CSE 326

11

Queue Implementations: Linked List

+ Implementations:
< Linked list implementation is natural

< What pointers do you need to keep track of for O(1)
implementation of Enqueue and Dequeue?

/-E*-E*-E/—',-EI

Front Back

R. Reo, CSE 326

12

Queue Implementations: Array-Based

+ Implementations:
< Array-based: can use List operations Insert and Delete,
but O(N) time for Dequeue

Dequeue (Delete) Enqueue (Insert)
~a P
0|1 | 2 3 | .. N1 MAX
A1|A2|A_3|A_4|..| A_N

+ How can you make array-based Enqueue and
Dequeue O(1) time?

R. Rao, CSE 326 13

Queue Implementations: Array-Based

+ Array-based Enqueue and Dequeue in O(1) time:
< Use Front and Back indices
» Enqueue x: increment Back and set Array[Back] = x
» Dequeue: return Array[Front] and increment Front
< To make full use of available space (due to Dequeues):
» Wrap around Front/Back to 0 after MAX
» Circular array implementation

Front Back
0 |1 2 3 |..] N-1 MAX
A1|A2|A 3|A _4|..| AN

R. Rao, CSE 326 14

Applications of Queues

+ File servers: Users needing accessto their files on a shared
file server machine are given access on a FIFO basis

+ Printer Queue: Jobs submitted to a printer are printed in
order of arrival

+ Phone calls made to customer service hotlines are usually
placed in a queue

+ Expected wait-time of real-life queues such as customers on
phone lines may be too hard to solve analytically use
gqueue ADT for smulating real-life queues

R. Rao, CSE 326 15

Queues are for
commoners...pray tell,
how does a prince

represent hisroyal
family hierarchy?

R. Rao, CSE 326 16

Storing Hierarchical Information

+ Lists, Stacks, and Queues represent linear sequences

+ Data often contain hierarchical relationships that

cannot be expressed as a linear ordering
< Filedirectories or folders on your computer
< Movesinagame
< Employee hierarchies in organizations and companies
< Classification hierarchies (e.g. phylum, family, genus,
Species)
< Family trees

R. Rao, CSE 326 17

Prince Philip Elizabieth ¥l
b. 1821 | b. 1826
r T T 1
Charles Diana Anng Mark Androw Sarah Edward
Prince of Wales | Spencer Princess | Phillips Duke of | Ferguson b 1964
Duke of Cornwall | b. 1961 Royal b. 1948 York b. 195%
b. 1948 d. 1997 b. 1960 b. 1960
Puter Lara
b. 1877 b. 1581
William Henry Beatrice Euguonie
b. 1382 b. 1984 b. 1288 b 1990

R. Reo, CSE 326

Tree Jargon

+ Basic terminology:

« nodes and edges 0
* root

* subtrees
+ parent ® © ©
* children, siblings
* leaves

- path ® ®
* ancestors
* descendants
« path length Note: Arrows denote directed edges
Trees always contain directed edges
R. Reo, CSE 326 but arrows are often omitted. »
More Tree Jargon

+ Length of apath =

number of edges

depth=0, height = 2
+ Depthof anodeN = ® g 0

length of path from
root to N

+ Height of node N =

length of longest path a o
from N to a leaf depth = 2, height=

+ Depth and height of
tree="7

R. Reo, CSE 326 20

Definition and Tree Trivia

4+ Recursive Definition of a Tree:
A treeisaset of nodesthat is either:
a. an empty set of nodes, or
b. has one node called the root from which zero or more
trees (“subtrees’) descend.

+ A treewith N nodesalwayshas _ edges
+ Twonodesinatree havea most __ paths between them?
+ Can anon-zero path from node N reach node N again?

+ Does depth of nodes in anon-zero path increase or decrease?

R. Rao, CSE 326 21

Definition and Tree Trivia

4+ Recursive Definition of a Tree:
A treeisaset of nodesthat is either:
a. an empty set of nodes, or
b. has one node called the root from which zero or more
trees (“subtrees’) descend.

+ A tree with N nodes always has N-1 edges
+ Two nodesin atree have at most one path between them

+ Can anon-zero path from node N reach node N again?
< No! Trees can never have cycles.

+ Does depth of nodes in anon-zero path increase or decrease?
< Depth always increases in a non-zero path

R. Rao, CSE 326 22

Implementation of Trees. The Obvious

+ Obvious Implementation: Node with value and linksto
children

Bonn ®

® © ©

4+ Problem: Do not know number of children for each node in
advance. Wastes space if maximum number of links assumed.

R. Rao, CSE 326 23

Implementation of Trees: 1% Child/Next Sib

+ Better Implementation: 1% Child/Next Sibling Representation
< Each node has 2 pointers: oneto itsfirst child and oneto
next sibling
< Can handle arbitrary number of children
< Exercise: Draw the representation for thistree...

R. Rao, CSE 326 24

Implementation of Trees: 1% Child/Next Sib

+ Better Implementation: 1% Child/Next Sibling Representation
< Each node has 2 pointers: oneto itsfirst child and oneto
next sibling
< Can handle arbitrary number of children
< Exercise: Draw the representation for thistree...

A Je[e] (A)
|B|-|$|c|3|$|o|-|-| ® © ©
[E [e[e}-[F [o]e]
® ©
R. Rao, CSE 326 25

Applications I: Arithmetic Expression Trees

Example Arithmetic Expression:
A+(B*(C/D))

How would you expressthis as atree?

R. Rao, CSE 326 26

Applications I: Arithmetic Expression Trees

Example Arithmetic Expression:

Tree for the above expression: Q °

A+(B* (C/D))

* Used in most compilers e 0
* No parenthesis need — use tree sructure

* Can speed up calculations e.g. replace
/ node with C/D if C and D are known e Q
* Calculate by traversing tree (how?)

R. Reo, CSE 326

Traversing Trees

+ Preorder: Root, then Children

+A*B/CD °

4+ Posorder: Children, then Root

ABCD/*+ Q °

+ Inorder: Left child, Root, Right child
A+B*C/D

R. Reo, CSE 326

Next class:;

Gardening 101: How to take care of your (binary) trees

\wl

m

To do:
Finish Homework no. 1 (due Wednesday, Jan 22)
Finish reading Chapter 3
Read Chapter 4

R. Rao, CSE 326 29

