1. Agfgd é>
CSE 326 Lecture 4: Lists and Stacks | &5 é!?; @@

5. Tefsdgass

+ Wewill review:
< Analysis: Searching a sorted array (from last time)
< List ADT: Insert, Delete, Find, First, Kth, etc.
< Array versus Linked List implementations
< Stacks

4+ Focus on running time (big-oh analysis)

4+ Covered in Chapter 3 of the text

R. Reo, CSE326

Analysis of a Search Algorithm

+ Problem: Search for anitem X inasorted array A. Return
index of item if found, otherwise return —1.

+ Brainstorming: What is an efficient way of doing this?

Al|l-4]-3| 5| 7 |12]| 35| 56| 98 [101 |124

X=101

R. Reo, CSE326

Binary Search

+ Problem: Search for an item X inasorted array A. Return
index of itemif found, otherwise return —1.

+ ldea: Compare X with middle item A[mid], go to left half
if X < A[mid] and right half if X > A[mid]. Repeat.

Al|-4| -3|] 5 7|12 | 35| 56| 98 [101 |124
Mld []
X=101 X > A[Mid] Mid =———=
A[Mid]=X
Found!
Return Mid =8
R. Rao, CSE326
Binary Search
Al-4| -1 5 7|12 | 35| 56| 98 (101 |124

public static int BinarySearch(int [] A, int X, int N)

{

int Low = 0, Mid, High =N - 1;
while(Low <= High)
Mid = (Low + High) / 2; // Find middle of array
if (X >A[Mid])

Low = Mid + 1;
elseif (X < A[Mid]) // Search first half

High = Mid - 1;
else return Mid;

{

// Search second half of array

// Found X!

by
return NOT_FOUND;

}

R. Reo, CSE326

Running Time of Binary Search

+ Givenanarray A with N elements, what is the worst case
running time of BinarySearch?

4+ What isthe worst case?

Al|l-4]-3| 5| 7 |12]| 35| 56| 98 [101 |124

Mld []
X=100 X > A[Mid] Mid =———=
Mid

R. Reo, CSE326

Running Time of Binary Search

4+ Worst caseiswhen item X is not found.

+ How many iterations are executed before Low > High?

int Low = 0, Mid, High =N - 1;
while(Low <= High) {
Mid = (Low + High) / 2; // Find middle of array
if (X>A[Mid]) // Search second half of array

Low = Mid + 1;

elseif (X < A[Mid]) // Search first half
High = Mid - 1;

else return Mid; // Found X!

}

R. Reo, CSE326

Running Time of Binary Search

+ Worst caseiswhen item X is not found.

+ How many iterations are executed before Low > High?
+ After fird iteration: N/2 items remaining

+ 2 jteration: (N/2)/2 = N/4 remaining

+ Kthiteration: ?

R. Reo, CSE326

Running Time of Binary Search

+ How many iterations are executed before Low > High?
+ After fird iteration: N/2 items remaining

+ 2 jteration: (N/2)/2 = N/4 remaining

+ Kthiteration: N/2X remaining

4+ Worst case: Last iteration occurs when N/2X > 1 and
N/2K+1 < 1 item remaining

@ 2X<Nand 2K+t >N [take log of both sides]
+ Number of iterationsisK <logN and K >log N - 1
+ Worst case running time = ®(log N)

R. Reo, CSE326

Lists

+ What isalist?
< An ordered sequence of elements A1, A2, ..., AN

+ Elements may be of arbitrary type, but all are the same type

+ List ADT: Common operations are:
< Insert, Find, Delete, IsSEmpty, IsLast, FindPrevious, First,
Kth, Last

+ Two types of implementation:
< Array-Based
< Linked List

+ Wewill compare worst case running time of ADT operations

R. Rao, CSE326 9

Lists: Array-Based Implementation

+ Basic ldea
< Pre-dlocate a big array of size MAX_SIZE
< Keep track of first free slot using a variable N
< Empty list hasN =0
< Shift elements when you have to insert or delete

01| 2 3 |..] N-1 MAX_SIZE
A1|A2|A_3|A _4|..| AN

+ Example: Insert(List L, ElementType E, Position P)

R. Rao, CSE326 10

Lists: Array-Based Implementation

public void insert(List L, ElementType X, Position P)
I/l Example: Inser‘% after positionP=1

3 N-1 ... | MAX_SIZE
A4| .. A_N o
\] \j

+ Basic Idea: Shift existing elements to the right by one slot
and insert new item

0| 1
A1l|A2

0|1 2] 3| .. | N1 N | .. | MAX_sizE
Al1|A2| X |A3| .. |[AN1| AN

4+ Running time for insert into N element array-based list = ?

R. Rao, CSE326 11

Lists: Array-Based Insert Operation

+ Basic Idea: Shift existing elements to the right by
one slot and insert new item

/

0 1 3 N-1 ... | MAX_SIZE
A1l A2 A4l .. A N e
7 N_“~7

4+ Running time for N elements = O(N)

< Worst case iswhen you insert at the beginning of list —
must shift all N items

R. Rao, CSE326 12

Lists: Linked List Implementation

node
N‘;Xt Insert the value X after P
/ \ node node
head Next
eader A1 e.x A2 [N
P
R. Rao, CSE326 13

Lists: Linked List Implementation

Insert the value X after P:
1. Create new node containing X
2. Update Next pointers

Next

7

N\

node
node
header Al Ne’x_t N P NULL
P
L node

Next

X o—

(Go through the Java/C++ code in Chap. 3 of your text)
R. Rao, CSE326 14

Lists: Linked List Implementation of Insert

Insert the value X after P:
Next 1. Create new node containing X
2. Update Next pointers

Q
/ \ node node
header Next

AL T Loyl a2 |NULL
P
node
)) X Next
Running Time = ? —
R. Reo, CSE326 15

Lists: Linked List Implementation of Insert

Next node
node
/ T AL Ne,x_t____, A2 |NuLL
header /f
P
node

Next

X o—

Running Time = ©(1)
+ Insert takes constant time - does not depend on input size N
+ Comparison: Array implementation takes O(N) time

R. Rao, CSE326 16

Caveats with Linked List Implementation

+ Whenever you break alist, your code should fix the list up as
soon as possible
< Draw pictures of the list to visualize what needs to be done
+ Pay special attention to boundary conditions:
< Empty list
< Singleitem — sameitem is both first and last
< Two items—first, last, but no middle items
< Three or more items — first, last, and middle items

R. Rao, CSE326 17

Header Node in Linked List Implementation

+ Why use a header node?
< If List pointsto first item, any change in first item
changes Ligt itself
< Need special checksif List pointer isNULL (e.g. Next is
invalid)
< Solution:
» Use “header node” at beginning of all lists (see text)

» List always points to header node, which pointsto first
item

R. Rao, CSE326 18

Other List Operations: Run time analysis

Operation Array-Based List Linked List
iSEmpty oD oD
Insert O(N) o
FindPrev ? ?
Delete ? ?
R. Reo, CSE326

19

Other List Operations: Run time analysis

Operation Array-Based List Linked List
iSEmpty oD oD
Insert O(N) oD
FindPrev o) O(N)
Delete O(N) O(N)
Find ? ?
FindNext ? ?

R. Reo, CSE326

20

Other List Operations: Run time analysis

Operation Array-Based List Linked List
iSEmpty oD oD
Insert O(N) oD
FindPrev o(1) O(N)
Delete O(N) O(N)
Find O(N) O(N)
FindNext o(1) o(1)
First ? ?
Kth ? ?
Last ? ?
Length ? ?
R. Reo, CSE326

21

Other List Operations: Run time analysis

Operation Array-Based List Linked List
iSEmpty oD oD
Insert O(N) oD
FindPrev o) O(N)
Delete O(N) O(N)
Find O(N) O(N)
FindNext o(1) o(1)
First o) o(1)
Kth o(1) O(N)
Last o(1) O(N)
Length oD O(N)

R. Reo, CSE326

22

Delete Operation using a Linked List

....... »| A 11| Next
_ L

\ node
node
Next

A2 A_13 |NULL

P

\ 4

Problem: To delete the node pointed to by P,
need a pointer to the previous node (= O(N))

R. Rao, CSE326 23

Doubly Linked Lists

+ FindPrev (and hence Delete) is O(N) because we cannot go to
previous node

+ Solution: Keep a back-pointer a each node
< Doubly Linked List

header prev prev prev

+ Advantages. Delete and FindPrev become O(1) operations

+ Disadvantages:
< More space (double the number of pointers at each node)
< More book-keeping for updating two pointers at each node

R. Rao, CSE326 24

Circularly Linked Lists

header

+ Set the pointer of the last node to first node instead of NULL

+ Useful when you want to iterate through whole list starting
from any node

< No need to write special code to wrap around at the end

+ A circular and doubly linked list speeds up both the Delete
and Last operations (first and last nodes point to each other)
< O(1) time for both instead of O(N)

R. Rao, CSE326 25

Applications of Lists

+ Polynomial ADT: store and manipulate single variable
polynomials with non-negative exponents
2 E.g 10X3+4X2+7=10X3+4 X2+ 0 X1+ 7 XO
< Datagtructure: stores coefficients C, and exponents i

+ Array Implementation: C[i] = C;
@ E.g C[3]=10,C[2] =4,C[1] =0,C[0] =7

+ ADT operations. Input polynomialsin arrays A and B
< Addition: [i] = ?
< Multiplication: ?

R. Rao, CSE326 26

Applications of Lists: Polynomials

+ Polynomial ADT: store and manipulate single variable
polynomials with non-negative exponents
2 E.g 10X3+4X2+7=10X3+4 X2+ 0 X1+ 7 X0
< Array Implementation: C[i] = C;
@ E.g C[3]=10,C[2] =4,C[1] =0,C[0] =7

+ ADT operations. Input polynomialsin arrays A and B
@ Addition: C[i] = Ali] + B[i];
< Multiplication: initializeC[1] = 0 forali

for each i, j pair:

qi+j] =dqi+] + Ai]*B[j];

R. Rao, CSE326 27

Applications of Lists: Polynomials

+ Polynomial ADT: store and manipulate single variable
polynomials with non-negative exponents
2 E.g 10X3+4X2+7=10X3+4 X2+ 0 X1+ 7 X0
< Array Implementation: C[i] = C,
@ E.g C[3]=10,C[2] =4,C[1] =0,C[0] =7

+ Problem with Array implementation: Sparse polynomials
< E.g. 10X300 + 4 X2+ 7
< Waste of space and time (C, are mostly 0s)
< Usesingly linked list, sorted in decreasing order of
exponents

R. Rao, CSE326 28

Applications of Lists: Radix Sort

+ Bucket sort: Sort N integers A, ..., Ay which arein the
range O through B-1
< Initialize array Count with B slots (“buckets’) to 0's
< Given an input integer A;, Count[A;]++
< Time: O(B+N) (= O(N) if B is®(N))

+ Radix sort = Bucket sort on digits of integers
< Each digit in the range 0 through 9
< Bucket-sort from least significant to most significant digit
< Use linked list to store numbers that are in same bucket
< Takes O(P(B+N)) time where P = number of digits

R. Rao, CSE326 29

Stacks

+ In Array implementation of Lists
< Insert and Delete took O(N) time (need to shift elements)

+ What if we avoid shifting by inserting and deleting only at
the beginning of the list?
< Both operations take O(1) time!

+ Stack: Same as list except that Insert/Delete allowed only at
the beginning of thelist (the top).

+ “LIFO’ — Lagt in, First out N

+ Push: Insert element &t top
+ Pop: Delete and Return top element

R. Rao, CSE326 30

Next class: Queuesand Trees

To do this week:
Homework no. 2 on the Web (due next Monday)
Read Chapters 3 and 4

R. Rao, CSE326 31

