
1R. Rao, CSE326

CSE 326 Lecture 4: Lists and Stacks

We will review:
Analysis: Searching a sorted array (from last time)
List ADT: Insert, Delete, Find, First, Kth, etc.
Array versus Linked List implementations
Stacks

Focus on running time (big-oh analysis)

Covered in Chapter 3 of the text

1. Agfgd
2. Dgsdsfd
3. Hdffdsf
4. Sdfgsfdg
5. Tefsdgass

2R. Rao, CSE326

Analysis of a Search Algorithm

Problem: Search for an item X in a sorted array A. Return
index of item if found, otherwise return –1.

Brainstorming: What is an efficient way of doing this?

-4 -3 5 7 12 35 56 98 101 124A

X=101

3R. Rao, CSE326

Binary Search

Problem: Search for an item X in a sorted array A. Return
index of item if found, otherwise return –1.

Idea: Compare X with middle item A[mid], go to left half
if X < A[mid] and right half if X > A[mid]. Repeat.

A

X=101

-4 -3 5 7 12 35 56 98 101 124

A[Mid]=X
Found!

Return Mid = 8

Mid
X > A[Mid] Mid

4R. Rao, CSE326

Binary Search

public static int BinarySearch(int [] A, int X, int N)
{

int Low = 0, Mid, High = N - 1;
while(Low <= High) {

Mid = (Low + High) / 2; // Find middle of array
if (X > A[Mid]) // Search second half of array

Low = Mid + 1;
else if (X < A[Mid]) // Search first half

High = Mid - 1;
else return Mid; // Found X!
}
return NOT_FOUND;

}

A -4 -1 5 7 12 35 56 98 101 124

5R. Rao, CSE326

Running Time of Binary Search

Given an array A with N elements, what is the worst case
running time of BinarySearch?

What is the worst case?

A

X=100

-4 -3 5 7 12 35 56 98 101 124

Mid

Mid
X > A[Mid] Mid

6R. Rao, CSE326

Running Time of Binary Search

Worst case is when item X is not found.

How many iterations are executed before Low > High?

int Low = 0, Mid, High = N - 1;
while(Low <= High) {

Mid = (Low + High) / 2; // Find middle of array
if (X > A[Mid]) // Search second half of array

Low = Mid + 1;
else if (X < A[Mid]) // Search first half

High = Mid - 1;
else return Mid; // Found X!
}

7R. Rao, CSE326

Running Time of Binary Search

Worst case is when item X is not found.

How many iterations are executed before Low > High?

After first iteration: N/2 items remaining

2nd iteration: (N/2)/2 = N/4 remaining

Kth iteration: ?

8R. Rao, CSE326

Running Time of Binary Search

How many iterations are executed before Low > High?

After first iteration: N/2 items remaining

2nd iteration: (N/2)/2 = N/4 remaining

Kth iteration: N/2K remaining

Worst case: Last iteration occurs when N/2K ≥ 1 and
N/2K+1 < 1 item remaining

2K ≤ N and 2K+1 > N [take log of both sides]

Number of iterations is K ≤ log N and K > log N - 1

Worst case running time = Θ(log N)

9R. Rao, CSE326

Lists

What is a list?
An ordered sequence of elements A1, A2, …, AN

Elements may be of arbitrary type, but all are the same type

List ADT: Common operations are:
Insert, Find, Delete, IsEmpty, IsLast, FindPrevious, First,
Kth, Last

Two types of implementation:
Array-Based
Linked List

We will compare worst case running time of ADT operations

10R. Rao, CSE326

Lists: Array-Based Implementation

Basic Idea:
Pre-allocate a big array of size MAX_SIZE
Keep track of first free slot using a variable N
Empty list has N = 0
Shift elements when you have to insert or delete

Example: Insert(List L, ElementType E, Position P)

A _ N…A _ 4A _ 3A_2A_1

MAX_SIZEN-1…3210

11R. Rao, CSE326

Lists: Array-Based Implementation

public void insert(List L, ElementType X, Position P)
// Example: Insert X after position P = 1

…

…
A_N…A_4A_3A_2A_1

MAX_SIZEN-1…3210

Basic Idea: Shift existing elements to the right by one slot
and insert new item

Running time for insert into N element array-based list = ?

…

…
A_N

N
A_N-1…A_3XA_2A_1

MAX_SIZEN-1…3210

12R. Rao, CSE326

Lists: Array-Based Insert Operation

Basic Idea: Shift existing elements to the right by
one slot and insert new item

Running time for N elements = O(N)
Worst case is when you insert at the beginning of list –
must shift all N items

…

…
A_N…A_4A_3A_2A_1

MAX_SIZEN-1…3210

13R. Rao, CSE326

Lists: Linked List Implementation

A_2 NULL

node
A_1 Next

node

P

Insert the value X after PNext

header

node

14R. Rao, CSE326

Lists: Linked List Implementation

A_2 NULL

node
A_1 Next

node

P

Insert the value X after P:
1. Create new node containing X
2. Update Next pointers

Next

header

X Next

node

(Go through the Java/C++ code in Chap. 3 of your text)

15R. Rao, CSE326

Lists: Linked List Implementation of Insert

A_2 NULL

node
A_1 Next

node

P

Insert the value X after P:
1. Create new node containing X
2. Update Next pointers

Next

header

X Next

node

Running Time = ?

16R. Rao, CSE326

Lists: Linked List Implementation of Insert

A_2 NULL

node
A_1 Next

node

P

Next

header

X Next

node

Running Time = Θ(1)
Insert takes constant time does not depend on input size N
Comparison: Array implementation takes O(N) time

17R. Rao, CSE326

Caveats with Linked List Implementation

Whenever you break a list, your code should fix the list up as
soon as possible

Draw pictures of the list to visualize what needs to be done

Pay special attention to boundary conditions:
Empty list
Single item – same item is both first and last
Two items – first, last, but no middle items
Three or more items – first, last, and middle items

18R. Rao, CSE326

Header Node in Linked List Implementation

Why use a header node?
If List points to first item, any change in first item
changes List itself
Need special checks if List pointer is NULL (e.g. Next is
invalid)
Solution:

Use “header node” at beginning of all lists (see text)
List always points to header node, which points to first
item

19R. Rao, CSE326

Other List Operations: Run time analysis

Linked ListArray-Based ListOperation

??Delete

??FindPrev

O(1)O(N)Insert

O(1)O(1)isEmpty

20R. Rao, CSE326

Other List Operations: Run time analysis

Linked ListArray-Based ListOperation

??FindNext

??Find

O(N)O(N)Delete

O(N)O(1)FindPrev

O(1)O(N)Insert

O(1)O(1)isEmpty

21R. Rao, CSE326

Other List Operations: Run time analysis

Linked ListArray-Based ListOperation

??Length

??Last

??Kth

??First

O(1)O(1)FindNext

O(N)O(N)Find

O(N)O(N)Delete

O(N)O(1)FindPrev

O(1)O(N)Insert

O(1)O(1)isEmpty

22R. Rao, CSE326

Other List Operations: Run time analysis

Linked ListArray-Based ListOperation

O(N)O(1)Length

O(N)O(1)Last

O(N)O(1)Kth

O(1)O(1)First

O(1)O(1)FindNext

O(N)O(N)Find

O(N)O(N)Delete

O(N)O(1)FindPrev

O(1)O(N)Insert

O(1)O(1)isEmpty

23R. Rao, CSE326

Delete Operation using a Linked List

P

Problem: To delete the node pointed to by P,
need a pointer to the previous node (= O(N))

A_13 NULL

node
A_12 Next

node

NextA_11

24R. Rao, CSE326

Doubly Linked Lists

FindPrev (and hence Delete) is O(N) because we cannot go to
previous node

Solution: Keep a back-pointer at each node
Doubly Linked List

Advantages: Delete and FindPrev become O(1) operations
Disadvantages:

More space (double the number of pointers at each node)
More book-keeping for updating two pointers at each node

header prev prev prev

25R. Rao, CSE326

Circularly Linked Lists

Set the pointer of the last node to first node instead of NULL

Useful when you want to iterate through whole list starting
from any node

No need to write special code to wrap around at the end

A circular and doubly linked list speeds up both the Delete
and Last operations (first and last nodes point to each other)

O(1) time for both instead of O(N)

header

26R. Rao, CSE326

Applications of Lists

Polynomial ADT: store and manipulate single variable
polynomials with non-negative exponents

E.g. 10X3 + 4X2 + 7 = 10X3 + 4 X2 + 0 X1 + 7 X0

Data structure: stores coefficients Ci and exponents i

Array Implementation: C[i] = Ci
E.g. C[3] = 10, C[2] = 4, C[1] = 0, C[0] = 7

ADT operations: Input polynomials in arrays A and B
Addition: C[i] = ?
Multiplication: ?

27R. Rao, CSE326

Applications of Lists: Polynomials

Polynomial ADT: store and manipulate single variable
polynomials with non-negative exponents

E.g. 10X3 + 4X2 + 7 = 10X3 + 4 X2 + 0 X1 + 7 X0

Array Implementation: C[i] = Ci

E.g. C[3] = 10, C[2] = 4, C[1] = 0, C[0] = 7

ADT operations: Input polynomials in arrays A and B
Addition: C[i] = A[i] + B[i];
Multiplication: initialize C[i] = 0 for all i
for each i, j pair:
C[i+j] = C[i+j] + A[i]*B[j];

28R. Rao, CSE326

Applications of Lists: Polynomials

Polynomial ADT: store and manipulate single variable
polynomials with non-negative exponents

E.g. 10X3 + 4X2 + 7 = 10X3 + 4 X2 + 0 X1 + 7 X0

Array Implementation: C[i] = Ci

E.g. C[3] = 10, C[2] = 4, C[1] = 0, C[0] = 7

Problem with Array implementation: Sparse polynomials
E.g. 10X3000 + 4 X2+ 7
Waste of space and time (Ci are mostly 0s)
Use singly linked list, sorted in decreasing order of
exponents

29R. Rao, CSE326

Applications of Lists: Radix Sort

Bucket sort: Sort N integers A1, …, AN which are in the
range 0 through B-1

Initialize array Count with B slots (“buckets”) to 0’s
Given an input integer Ai, Count[Ai]++
Time: O(B+N) (= O(N) if B is Θ(N))

Radix sort = Bucket sort on digits of integers
Each digit in the range 0 through 9
Bucket-sort from least significant to most significant digit
Use linked list to store numbers that are in same bucket
Takes O(P(B+N)) time where P = number of digits

30R. Rao, CSE326

Stacks

In Array implementation of Lists
Insert and Delete took O(N) time (need to shift elements)

What if we avoid shifting by inserting and deleting only at
the beginning of the list?

Both operations take O(1) time!

Stack: Same as list except that Insert/Delete allowed only at
the beginning of the list (the top).

“LIFO” – Last in, First out

Push: Insert element at top

Pop: Delete and Return top element

31R. Rao, CSE326

Next class: Queues and Trees

To do this week:

Homework no. 2 on the Web (due next Monday)

Read Chapters 3 and 4

