

Other Applications

- Binomial Queues:
 - Starting from an empty queue, buildBinomialQueue takes O(N) rather than O(N log N) to insert N nodes
 - Analysis very similar to that for BigNum
 - ⇔ Read Section 11.2 for the final
- Splay Trees
 - Result: Starting from an empty tree, M consecutive tree operations take O(M log N) time
 - \Rightarrow Amortized run time per operation = O(log N)
 - \Rightarrow Uses the potential function $\Phi(T) =$ sum over all nodes *x* in *T* of log(number of descendants of *x*)
- ⇔ Complicated analysis in Section 11.5 which you don't need to know for the final R. Rao, CSE 326 13

Graph Algorithms (cont.)

- Dijkstra's shortest path algorithm greed works!
 - Know how a priority queue can speed up the algorithm
- Depth First Search (DFS)
- Solution Minimum Spanning Trees: Know the 2 greedy algorithms
 - Prim's algorithm similar to Dijkstra's algorithm
 - Kruskal's algorithm
 - Know how it uses a priority queue and Union/Find
 - Euler versus Hamiltonian circuits difference in run times
 - Know what P, NP, and NP-completeness mean
 - How one problem can be "reduced" to another (e.g. input to HC can be transformed into input for TSP)

21

R. Rao, CSE 326

