
1R. Rao, CSE 326

Lecture 25: AlgoRhythm Design Techniques

✦ Agenda for today’s class:
➭ Coping with NP-complete and other hard problems
➧ Approximation using Greedy Techniques

$ Optimally bagging groceries: Bin Packing
➧ Divide & Conquer Algorithms and their Recurrences
➧ Dynamic Programming by “memoizing”

$ Fibonacci’s Revenge
➧ Randomized Data Structures and Algorithms

$ Treaps
$ “Probably correct” primality testing

➧ In the Sections on Thursday: Backtracking
$ Game Trees, minimax, and alpha-beta pruning

✦ Read Chapter 10 and Sec 12.5 in the textbook

2R. Rao, CSE 326

Recall: P, NP, and Exponential Time Problems

✦ Diagram depicts relationship
between P, NP, and EXPTIME
(class of problems that can be
solved within exponential time)

✦ NP-Complete problem = problem
in NP to which all other NP
problems can be reduced
➭ Can convert input for a given NP

problem to input for NPC problem

✦ All algorithms for NP-C problems
so far have tended to run in nearly
exponential worst case time

It is believed that
P ≠ NP ≠ EXPTIME

EXPTIME

NP

P

NPC

Sorting,
searching,

etc.

(TSP, HC, etc.)

3R. Rao, CSE 326

The “Curse” of NP-completeness

✦ Cook first showed (in 1971) that
satisfiability of Boolean formulas
(SAT) is NP-Complete

✦ Hundreds of other problems (from
scheduling and databases to
optimization theory) have since
been shown to be NPC

✦ No polynomial time algorithm is
known for any NPC problem!

“reducible to”

4R. Rao, CSE 326

Coping strategy #1: Greedy Approximations

✦ Use a greedy algorithm to solve the given problem
➭ Repeat until a solution is found:

➧ Among the set of possible next steps:
Choose the current best-looking alternative and commit to it

✦ Usually fast and simple

✦ Works in some cases…(always finds optimal solutions)
➭ Dijsktra’s single-source shortest path algorithm
➭ Prim’s and Kruskal’s algorithm for finding MSTs

✦ but not in others…(may find an approximate solution)
➭ TSP – always choosing current least edge-cost node to visit next
➭ Bagging groceries…

5R. Rao, CSE 326

The Grocery Bagging Problem

✦ You are an environmentally-conscious grocery bagger at QFC

✦ You would like to minimize the total number of bags needed
to pack each customer’s items.

Items (mostly junk food) Grocery bags

Sizes s1, s2,…, sN (0 < si ≤ 1) Size of each bag = 1

6R. Rao, CSE 326

Optimal Grocery Bagging: An Example

✦ Example: Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3
➭ How may bags of size 1 are required?

✦ Can find optimal solution through exhaustive search
➭ Search all combinations of N items using 1 bag, 2 bags, etc.
➭ Takes exponential time!

0.2

0.8 0.7 0.5
0.4

0.3 0.1
Only 3 bags required

7R. Rao, CSE 326

Bagging groceries is NP-complete

✦ Bin Packing problem: Given N items of sizes s1, s2,…, sN (0
< si ≤ 1), pack these items in the least number of bins of size 1.

✦ The general bin packing problem is NP-complete
➭ Reductions: All NP-problems → SAT → 3SAT → 3DM →

PARTITION → Bin Packing (see Garey & Johnson, 1979)

Items Bins

Sizes s1, s2,…, sN (0 < si ≤ 1) Size of each bin = 1

8R. Rao, CSE 326

Greedy Grocery Bagging

✦ Greedy strategy #1 “First Fit”:
1. Place each item in first bin large enough to hold it
2. If no such bin exists, get a new bin

✦ Example: Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3

9R. Rao, CSE 326

Greedy Grocery Bagging

✦ Greedy strategy #1 “First Fit”:
1. Place each item in first bin large enough to hold it
2. If no such bin exists, get a new bin

✦ Example: Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3

✦ Approximation Result: If M is the optimal number of bins,
First Fit never uses more than 1.7M bins (see textbook).

0.2
0.5 0.7 0.8

0.1

0.4

0.3 Uses 4 bins
Not optimal

10R. Rao, CSE 326

Getting Better at Greedy Grocery Bagging

✦ Greedy strategy #2 “First Fit Decreasing”:
1. Sort items according to decreasing size
2. Place each item in first bin large enough to hold it

✦ Example: Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3

11R. Rao, CSE 326

Getting Better at Greedy Grocery Bagging

✦ Greedy strategy #2 “First Fit Decreasing”:
1. Sort items according to decreasing size
2. Place each item in first bin large enough to hold it

✦ Example: Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3

✦ Approximation Result: If M is the optimal number of bins,
First Fit Decreasing never uses more than 1.2M + 4 bins
(see textbook).

0.2

0.8 0.7 0.5
0.4

0.3 0.1 Uses 3 bins
Optimal in this case
Not optimal in general

12R. Rao, CSE 326

Coping Stategy #2: Divide and Conquer

✦ Basic Idea:
1. Divide problem into multiple smaller parts
2. Solve smaller parts (“divide”)
➧ Solve base cases directly
➧ Solve non-base cases recursively

3. Merge solutions of smaller parts (“conquer”)

✦ Elegant and simple to implement
➭ E.g. Mergesort, Quicksort, etc.

✦ Run time T(N) analyzed using a recurrence relation:
➭ T(N) = aT(N/b) + Θ(Nk) where a ≥ 1 and b > 1

No. of
parts

Part size Time for merging solutions

13R. Rao, CSE 326

Analyzing Divide and Conquer Algorithms

✦ Run time T(N) analyzed using a recurrence relation:
➭ T(N) = aT(N/b) + Θ(Nk) where a ≥ 1 and b > 1

✦ General solution (see theorem 10.6 in text):

✦ Examples:
➭ Mergesort: a = b = 2, k = 1 →
➭ Three parts of half size and k = 1 →
➭ Three parts of half size and k = 2 →









<
=

>
=

kk

kk

ka

baNO

baNNO

baNO

NT

b

 if)(

 if)log(

 if)(

)(

log

)()()(59.13log2 NONONT ==
)()(2NONT =

)log()(NNONT =

14R. Rao, CSE 326

Another Example of D & C

✦ Recall our old friend Signor Fibonacci and his numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, …

➭ First two are: F0 = F1 = 1
➭ Rest are sum of preceding two
➭ Fn = Fn-1 + Fn-2 (n > 1) Leonardo Pisano

Fibonacci (1170-1250)

15R. Rao, CSE 326

A D & C Algorithm for Fibonacci Numbers

✦ public static int fib(int i) {
if (i < 0) return 0; //invalid input
if (i == 0 || i == 1) return 1; //base cases
else return fib(i-1)+fib(i-2);
}

✦ Easy to write: looks like the definition of Fn

✦ But what is the running time T(N)?

16R. Rao, CSE 326

Recursive Fibonacci

✦ public static int fib(int N) {
if (N < 0) return 0; // time = 1 for the < operation
if (N == 0 || N == 1) return 1; // time = 3 for 2 ==, 1 ||
else return fib(N-1)+fib(N-2); // T(N-1)+T(N-2)+1
}

✦ Running time T(N) = T(N-1) + T(N-2) + 5

✦ Using Fn = Fn-1 + Fn-2 we can show by induction that

T(N) ≥ FN.

✦ We can also show by induction that

FN ≥ (3/2)N

17R. Rao, CSE 326

Recursive Fibonacci

✦ public static int fib(int N) {
if (N < 0) return 0; // time = 1 for the < operation
if (N == 0 || N == 1) return 1; // time = 3 for 2 ==, 1 ||
else return fib(N-1)+fib(N-2); // T(N-1)+T(N-2)+1
}

✦ Running time T(N) = T(N-1) + T(N-2) + 5

✦ Therefore, T(N) ≥ (3/2)N

i.e. T(N) = Ω((1.5)N) Yikes…exponential
running time!

18R. Rao, CSE 326

The Problem with Recursive Fibonacci

✦ Wastes precious time by re-computing fib(N-i) over and
over again, for i = 2, 3, 4, etc.!

fib(N)

fib(N-1)

fib(N-2)

fib(N-3)

19R. Rao, CSE 326

Solution: “Memoizing” (Dynamic Programming)

✦ Basic Idea: Use a table to store subproblem solutions
➭ Compute solution to a subproblem only once
➭ Next time the solution is needed, just look-up the table

✦ General Structure of DP algorithms:
➭ Define problem in terms of smaller subproblems
➭ Solve & record solution for each subproblem & base cases
➭ Build solution up from solutions to subproblems

20R. Rao, CSE 326

Memoized (DP-based) Fibonacci

✦ public static int fib(int i) {
// create a global array fibs to hold fib numbers
// int fibs[N]; // Initialize array fibs to 0�s

if (i < 0) return 0; //invalid input
if (i == 0 || i == 1) return 1; //base cases
// compute value only if previously not computed
if (fibs[i] == 0)

fibs[i] = fib(i-1)+fib(i-2); //update table (memoize!)

return fibs[i];
}

Run Time = ?

21R. Rao, CSE 326

The Power of DP

✦ Each value computed only once! No multiple recursive calls

✦ N values needed to compute fib(N)

fib(N)

fib(N-1)

fib(N-2)

fib(N-3)

Run Time = O(N)

22R. Rao, CSE 326

Summary of Dynamic Programming

✦ Very important technique in CS: Improves the run time of D
& C algorithms whenever there are shared subproblems

✦ Examples:
➭ DP-based Fibonacci
➭ Ordering matrix multiplications
➭ Building optimal binary search trees
➭ All-pairs shortest path
➭ DNA sequence alignment
➭ Optimal action-selection and reinforcement learning in

robotics
➭ etc.

23R. Rao, CSE 326

Coping Strategy #3: Viva Las Vegas!
(Randomization)

✦ Basic Idea: When faced with several alternatives, toss a coin
and make a decision
➭ Utilizes a pseudorandom number generator (Sec. 10.4.1 in text)

✦ Example: Randomized QuickSort
➭ Choose pivot randomly among array elements

✦ Compared to choosing first element as pivot:
➭ Worst case run time is O(N2) in both cases

➧ Occurs if largest chosen as pivot at each stage
➭ BUT: For same input, randomized algorithm most likely won’t

repeat bad performance whereas deterministic quicksort will!
➭ Expected run time for randomized quicksort is O(N log N) time

for any input

24R. Rao, CSE 326

Randomized Data Structures

✦ We’ve seen many data structures with good average case
performance on random inputs, but bad behavior on
particular inputs
➭ E.g. Binary Search Trees

✦ Instead of randomizing the input (which we cannot!),
consider randomizing the data structure!

25R. Rao, CSE 326

What’s the Difference?

✦ Deterministic data structure with good average time over all
inputs
➭ If your application happens to always contain the “bad” inputs,

you are in big trouble!

✦ Randomized data structure with good expected time for any
input
➭ Once in a while you will have an expensive operation, but no

input can make this happen all the time

✦ Kind of like an
insurance policy

for your algorithm!

26R. Rao, CSE 326

✦ Deterministic data structure with good average time over all
inputs
➭ If your application happens to always contain the “bad” inputs,

you are in big trouble!

✦ Randomized data structure with good expected time for any
input
➭ Once in a while you will have an expensive operation, but no

input can make this happen all the time

✦ Kind of like an
insurance policy

for your algorithm!

What’s the Difference?

(Disclaimer: Allstate wants
nothing to do with this
boring lecture or lecturer.)

27R. Rao, CSE 326

Example: Treaps (= Trees + Heaps)

✦ Treaps have both the binary
search tree property as well
as the heap-order property

✦ Two keys at each node
➭ Key 1 = search element
➭ Key 2 = randomly

assigned priority

15
12

10
30

9
15

7
8

4
18

6
7

2
9

Heap in yellow; Search tree in green

priority
search key

Legend:

28R. Rao, CSE 326

Treap Insert

✦ Create node and assign it a random priority
✦ Insert as in normal BST

✦ Rotate up until heap order is restored (while maintaining
BST property)

insert(15)

6
7

7
8

2
9

14
12

6
7

7
8

2
9

9
15

14
12

6
7

7
8

2
9

14
12

9
15

29R. Rao, CSE 326

Tree + Heap…

✦ Inserting sorted data into a BST gives poor performance!

✦ Try inserting data in sorted order into a treap. What happens?

6
7

insert(7)

6
7

insert(8)

7
8

6
7

insert(9)

7
8

2
9

6
7

insert(12)

7
8

2
9

15
12

Why Bother?

Tree shape does not depend
on input order anymore!

30R. Rao, CSE 326

Treap Summary

✦ Implements (randomized) Binary Search Tree ADT
➭ Insert in expected O(log N) time for any input
➭ Delete in expected O(log N) time for any input

➧ Find the key and increase its value to ∞
➧ Rotate it to the fringe
➧ Snip it off

➭ Find in expected O(log N) time for any input
➭ But worst case is O(N)

✦ Memory use
➭ O(1) per node
➭ About the cost of AVL trees

✦ Very simple to implement, little overhead
➭ Unlike AVL trees, no need to update balance information!

31R. Rao, CSE 326

Final Example: Randomized Primality Testing

✦ Problem: Given a number N, is N prime?
➭ Important for cryptography

✦ Randomized Algorithm based on a Result by Fermat:
1. Guess a random number A, 0 < A < N
2. If (AN-1 mod N) ≠ 1, then Output “N is not prime”
3. Otherwise, Output “N is (probably) prime”

– N is prime with high probability but not 100%
– N could be a “Carmichael number” – a slightly more

complex test rules out this case (see text)
– Can repeat steps 1-3 to make error probability close to 0

✦ Recent breakthrough: Polynomial time algorithm that is
always correct (runs in O(log12 N) time for input N)
➭ Agrawal, M., Kayal, N., and Saxena, N. "Primes is in P." Preprint, Aug. 6,

2002. http://www.cse.iitk.ac.in/primality.pdf

32R. Rao, CSE 326

To Do:
Read Chapter 10 and

Sec. 12.5 (treaps)
Finish HW assignment #5

Next Time:
A Taste of Amortization

Final Review

Yawn…are we done yet?

