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Lecture 22: Kruskal and beyond…

�
What we will discuss today:

�
Minimum Spanning Trees

�
Prim’s Algorithm 

�
Kruskal’s Algorithm

�
Those Puzzles from 4th grade!

�
Euler Circuits and Tours

�
Covered in Chapter 9 in the textbook

Some slides based on: CSE 326 by S. Wolfman, 2000
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�
Spanning tree: subset of edges from a connected graph G 
= (V,E) that:
1. touches all vertices in the graph (spans the graph), and
2. forms a tree (is connected, with no cycles à |V|-1 edges)

�
Minimum spanning tree (MST): spanning tree with the 
least total edge cost

Recall from Last Time: Spanning Trees
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Why greed works for finding MSTs…
�

For any spanning tree T, inserting an edge e not in T creates 
a cycle à Removing any edge gives back a spanning tree
�

If e had a lower cost than removed edge, we get a lower cost 
spanning tree

�
Idea: Create a spanning tree as follows:
1. Add an edge of minimum cost that doesn’ t create a cycle
2. Repeat Step 1 for |V|-1 edges

�
This spanning tree has minimum cost because: 
�

if you can replace an edge with another edge of lower cost 
without creating a cycle, our algorithm would have picked it

�
Two MST algorithms: Prim (1957) and Kruskal, Jr. (1956)
�

Differ in how an edge of minimum cost is picked
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1. Starting from an empty 
tree, T, pick a vertex, v0, at 
random and initialize:      
V’ = { v0}  and E’  = { }

2. Choose a vertex v not in V’
such that edge weight from 
v to a vertex in V’  is 
minimal (get greedy!)

3. Add v to V’ and the edge to 
E’ if no cycle is created

4. Repeat until all vertices 
have been added

Prim’s Algorithm for Finding the MST
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Prim’s Algorithm: Implemented and Analyzed
�

Implementation details:
1. Initialize cost of each node to � and mark it unknown
2. Initialize cost of one selected node S to 0, with Prev[S] = 0
3. While there are unknown nodes left in the graph

1. Select the unknown node N with the lowest cost 
2. Mark N as known
3. For each unknown node A adjacent to N

If cost of (N, A) < A’s cost
A’s cost = cost of (N, A)
Prev[A] = N  //store preceding node

�
This is almost identical to Dijkstra’s algorithm!

�
Run time is O(|V|2) without heaps and O(|V| log |V| + |E| log 
|V|) using binary heaps
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�
In 1956, J. B. Kruskal, Jr. found another way to find MSTs 

�
Main Idea: Select edges in order of increasing cost and 
accept an edge only if it does not cause a cycle

�
Pseudocodefor Kruskal’s MST algorithm:

�
Put all the vertices into single node trees by themselves

�
Put all the edges in a priority queue with key = edge cost

�
Repeat until |V|-1 edges have been accepted�

Extract cheapest edge�
If it forms a cycle, ignore it
else accept the edge – it will join two existing trees 
and yield a larger tree

�
Return the accepted edges (they form the spanning tree)         

Kruskal finds another greedy way to MST
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Kruskal’ s Algorithm in C

Forest Kruskal_MST( Graph g, int n, double **costs ) 
{

Forest T;
Queue q;
Edge e;
T = ConsForest( g );
q = BuildHeap( g, costs );
for(i=0;i<(n-1);i++) {

do {
e = DeleteMin( q );

} while ( Cycle( e, T ) );
AddEdge( T, e );

}
return T;

} 

Initial Forest: single vertex trees

Priority Q of edges

n = |V|
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Kruskal’ s Algorithm in C

Forest Kruskal_MST( Graph g, int n, double **costs ) 
{

Forest T;
Queue q;
Edge e;
T = ConsForest( g );
q = BuildHeap( g, costs );
for(i=0;i<(n-1);i++) {

do {
e = DeleteMin( q );

} while ( Cycle( e, T ) );
AddEdge( T, e );

}
return T;

} 

Need n-1 edges 
to fully connect (span) 

n vertices
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Kruskal’ s Algorithm in C

Forest Kruskal_MST( Graph g, int n, double **costs ) 
{

Forest T;
Queue q;
Edge e;
T = ConsForest( g );
q = BuildHeap( g, costs );
for(i=0;i<(n-1);i++) {

do {
e = DeleteMin( q );

} while ( Cycle( e, T ) );
AddEdge( T, e );

}
return T;

} 

Try the cheapest edge

Until we find one that doesn’t
form a cycle

... and add it to the forest!
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But how do 
we detect a 

cycle?

Kruskal’ s Algorithm in C

Forest Kruskal_MST( Graph g, int n, double **costs ) 
{

Forest T;
Queue q;
Edge e;
T = ConsForest( g );
q = BuildHeap( g, costs );
for(i=0;i<(n-1);i++) {

do {
e = DeleteMin( q );

} while ( Cycle( e, T ) );
AddEdge( T, e );

}
return T;

} 
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Hints for Detecting Cycles in Kruskal’s Method

�
Initially, you have n different elements (single vertex trees)

�
After you have added some edges, you have fewer elements 
– several disconnected trees, each with a subset of vertices

�
When do you get a cycle? If you add an edge (u,v) where 
both u and v are already in the same tree Ti, you get a cycle

�
Therefore, to check for cycles, you only need to find out if u 
and v are in the same tree

�
If not, then the edge can be added and we union vertices in u’s 
tree with vertices in v’s tree

�
What is your favorite data structure for such operations?
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Disjoint Set ADT in Kruskal’s Algorithm

�
Here’s how the disjoint set ADT makes an appearance:

�
In Kruskal’s algorithm, connected vertices form 
equivalence classes (they are in the same tree)

�
“Being connected”  is the equivalence relation

�
Initially, each vertex is in a class by itself

�
As edges are added, more vertices become related
and the equivalence classes grow

�
Until finally all the vertices are in a single equivalence class
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Union/Find in Kruskal’s Algorithm

�
Representatives

�
One vertex in each class can be the representative of that 
class

�
Vertices can be stored in up-tree data structures with roots 
= class representatives

�
This is what we used for Union-Find

�
Detecting cycles is easy!

�
For each edge (u,v) that you’re going to add

�
If Find(u) == Find(v), then u and v are in the same class 
(same tree) and therefore the edge will form a cycle

�
Otherwise, we accept the edge and do Union(u,v)
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Kruskal’ s Algorithm in C

Forest Kruskal_MST( Graph g, int n, double **costs ) {
Forest T;
Queue q;
Edge e;
DisjSet S = InitializeSet( g );
T = ConsForest( g );
q = BuildHeap( g, costs );
for(i=0;i<(n-1);i++) {

do {
e = DeleteMin( q ); // e = (u,v)

} while ( (Find(u,S) == Find(v,S)) );
AddEdge( T, e );
Union(S, u, v);

}
return T;  } 
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Kruskal in action

Each vertex is its
own representative

All the vertices are in
single element trees
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Kruskal in action 

The cheapest edge
is h-g

Add it to the forest,
joining h and g into a

2-element tree
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Add it to the forest,
joining h and g into a

2-element tree

Choose g as its
representative

Kruskal in action 
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The next cheapest edge
is c-i

Add it to the forest,
joining c and i into a

2-element tree

Choose c as its
representative

Our forest now has 2 two-element trees
and 5 single vertex ones

Kruskal in action 
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The next cheapest edge
is g-f

Add it to the forest,
joining g and f into a

3-element tree

Choose g as its
representative

Our forest now has 1 three-element tree, 
1 two-element tree, and 4 single vertex ones

Kruskal in action 
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The next cheapest edge
is a-b

Add it to the forest,
joining a and b into a

2-element tree

Choose b as its
representative

Our forest now has only 2 single vertex trees

Kruskal in action 
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The next cheapest edge
is c-f

Add it to the forest:
Merge two 2-element 

trees (Union the 2 sets)

Choose the rep of one
as its representative

Kruskal in action 
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The next cheapest edge
is g-i

Find(g) is c

g-i forms a cycle!

Find(i) is also c

Ignore this edge

Kruskal in action 
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The next cheapest edge
is c-d

Find(c) is c

c-d joins two
trees, so we add d

Find(d) is d

.. and keep c as the representative

Kruskal in action 
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The next cheapest edge
is h-i

Find(h) is c

h-i forms a cycle,
so ignore it!

Find(i) is c

Kruskal in action 
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The next cheapest edge
is a-h

Find(a) is b

a-h joins two trees,
and we add it

Find(h) is c

Kruskal in action 
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The next cheapest edge
is b-c But b-c forms a cycle

That’s n-1 edges added – we now have a spanning tree!

So add d-e instead

Kruskal done!



27R. Rao, CSE 326

Kruskal’s Algorithm: Analysis

Forest Kruskal_MST( Graph g, int n, double **costs ) {
Forest T;
Queue q;
Edge e;
DisjSet S = InitializeSet( g );
T = ConsForest( g );
q = BuildHeap( g, costs );
for(i=0;i<(n-1);i++) {

do {
e = DeleteMin( q ); // e = (u,v)

} while ( (Find(u,S) == Find(v,S)) );
AddEdge( T, e );
Union(S, u, v);

}
return T;  } 

O(|V|)

O(|E|)

Worst case:
DeleteMin |E|
edges, each
O(log |E|) � O(1) amortized

Total time = O(|E| log |E|)

O(1)
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Kruskal versus Prim

�
Worst case running time

�
Prim: O(|V| log |V| + |E| log |V|) 

�
Kruskal: O(|E| log |E|) = O(|E| log |V|) since |E| = O(|V|2) 

�
Kruskal usually runs much faster than O(|E| log |V|) in 
practice

�
Not all edges need to be DeleteMin-ed typically

�
The required |V|-1 edges are usually found quickly

�
So, Kruskal tends to be faster than Prim



29R. Rao, CSE 326

It’s Puzzle Time!

Try drawing these figures without lifting your 
pencil, drawing each line only once…
(begin: memories of 4th grade days…)
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It’s Puzzle Time!

Which of these can you draw without lifting your 
pencil, drawing each line only once?
Can you start and end at the same point?
(end: memories of 4th grade days…)
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Historical Puzzle: Seven Bridges of Königsberg

KNEIPHOFF

PREGEL

Want to cross all bridges but…
Can cross each bridge only once (High toll to cross twice?!)

32R. Rao, CSE 326

A “Multigraph”  for the Bridges of Königsberg

Find a path that
traverses every edge
exactly once
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Euler Circuits and Tours
�

Euler tour: a path through a graph that visits each edge 
exactly once

�
Euler circuit: an Euler tour that starts and ends at the same 
vertex

�
Named after Leonhard Euler (1707-1783), who cracked this 
problem and founded graph theory in 1736

�
Some observations for undirected graphs:

�
An Euler circuit is only possible if the graph is connected and 
each vertex has even degree (= # of edges on the vertex) [Why?]

�
An Euler tour is only possible if the graph is connected and 
either all vertices have even degree or exactly two have odd 
degree [Why?]
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Euler Circuit Problem

�
Problem: Given an undirected graph G = (V,E), find an Euler 
circuit in G

�
Note: Can check if one exists in linear time (how?)

�
Given that an Euler circuit exists, how do we construct an 
Euler circuit for G?

�
Hint: Think deep! We’ve discussed the answer in depth 
before…
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Next Class: 

Constructing Euler circuits

The vast gulf between Euler and Hamiltonian circuits

The dreaded world of NP hardness

To Do:

Homework Assignment #5 (the last one!)

Finish reading chapter 9


