
1R. Rao, CSE 326

Lecture 18: The Dynamic Equivalence Problem
(a.k.a. Disjoint Sets, Union/Find etc.)

✦ The Plot:
➭ A new problem: Dynamic Equivalence
➭ The setting:
➧ Motivation and Definitions

➭ The players:
➧ Union and Find, two ADT operations
➧ Up-tree data structure

➭ Suspense-filled cliffhanger (to be continued…next time)

✦ Covered in Chapter 8 of the textbook

ZING

Some of the material on these slides are courtesy of: S. Wolfman, CSE 326, 2000

BAM!

2R. Rao, CSE 326

Motivation

✦ Consider the relation “=” between integers
1. For any integer A, A = A
2. For integers A and B, A = B means that B = A
3. For integers A, B, and C, A = B and B = C means that A = C

✦ Consider cities connected by two-way roads
1. A is trivially connected to itself
2. A is connected to B means B is connected to A
3. If A is connected to B and B is connected to C, then A is

connected to C

✦ Consider electrical connections between components on a
computer chip
➭ 1, 2, and 3 are again satisfied

3R. Rao, CSE 326

Equivalence Relations

✦ An equivalence relation R obeys three properties:
1. reflexive: for any x, xRx is true
2. symmetric: for any x and y, xRy implies yRx
3. transitive: for any x, y, and z, xRy and yRz implies xRz

✦ Preceding relations are all examples of equivalence relations

✦ What are not equivalence relations?

4R. Rao, CSE 326

Equivalence Relations

✦ An equivalence relation R obeys three properties:
1. reflexive: for any x, xRx is true
2. symmetric: for any x and y, xRy implies yRx
3. transitive: for any x, y, and z, xRy and yRz implies xRz

✦ Preceding relations are all examples of equivalence relations

✦ What are not equivalence relations?
➭ What about “<” on integers? (1 and 2 are violated)
➭ What about “≤≤≤≤” on integers? (2 is violated)
➭ What about “is having an affair with” in a soap opera?

➧ Victor i.h.a.a.w. Ashley i.h.a.a.w. Brad does not imply
Victor i.h.a.a.w. Brad (i.h.a.a.w. is not transitive)

5R. Rao, CSE 326

Equivalence Classes and Disjoint Sets

✦ Any equivalence relation R divides all the elements into
disjoint sets of “equivalent” items

✦ Let ~ be an equivalence relation. Then, if A~B, then A and B
are in the same equivalence class.

✦ Examples:
➭ On a computer chip, if ~ denotes “electrically connected,” then

sets of connected components form equivalence classes
➭ On a map, cites that have two-way roads between them form

equivalence classes
➭ What are the equivalence classes for the relation “Modulo N”

applied to all integers?

6R. Rao, CSE 326

Equivalence Classes and Disjoint Sets

✦ Let ~ be an equivalence relation. Then, if A~B, then A and B
are in the same equivalence class.

✦ Examples:
➭ The relation “Modulo N” divides all integers in N equivalence

classes (for the remainders 0, 1, …, N-1)
E.g. Under Mod 5:
0 ~ 5 ~ 10 ~ 15 …
1 ~ 6 ~ 11 ~ 16 …
2 ~ 7 ~ 12 ~ …
3 ~ 8 ~ 13 ~ …
4 ~ 9 ~ 14 ~ …
(5 equivalence classes denoting remainders 0 through 4 when
divided by 5)

7R. Rao, CSE 326

Union and Find: Problem Definition

✦ Given a set of elements and some equivalence relation ~
between them, we want to figure out the equivalence classes

✦ Given an element, we want to find the equivalence class it
belongs to
➭ E.g. Under mod 5, 13 belongs to the equivalence class of 3
➭ E.g. For the map example, want to find the equivalence class

of Redmond (all the cities it is connected to)

✦ Given a new element, we want to add it to an equivalence
class (union)
➭ E.g. Under mod 5, since 18 ~ 13, perform a union of 18 with the

equivalence class of 13
➭ E.g. For the map example, Woodinville is connected to Redmond, so

add Woodinville to equivalence class of Redmond

8R. Rao, CSE 326

Disjoint Set ADT

✦ Stores N unique elements

✦ Two operations:
➭ Find: Given an element, return the name of its

equivalence class
➭ Union: Given the names of two equivalence classes,

merge them into one class (which may have a new name
or one of the two old names)

✦ ADT divides elements into E equivalence classes, 1 ≤ E ≤ N
➭ Names of classes are arbitrary
➭ E.g. 1 through N, as long as Find returns the same name for 2

elements in the same equivalence class

9R. Rao, CSE 326

Disjoint Set ADT Properties

✦ Disjoint set equivalence property: every element of a DS
ADT belongs to exactly one set (its equivalence class)

✦ Dynamic equivalence property: the set of an element can
change after execution of a union

{1,4,8}

{7}

{6}

{5,9,10}
{2,3}

find(4)

8

union(2,6)

{2,3,6}

Example:
Initial Classes =
{1,4,8}, {2,3},
{6}, {7},
{5,9,10}
Name of equiv.
class underlined

10R. Rao, CSE 326

Formal Definition (for Math lovers’ eyes only)

✦ Given a set U = {a1, a2, … , an}

✦ Maintain a partition of U, a set of subsets (or equivalence
classes) of U denoted by {S1, S2, … , Sk} such that:
➭ each pair of subsets Si and Sj are disjoint:

➭ together, the subsets cover U:

➭ each subset has a unique name

✦ Union(a, b) creates a new subset which is the union of a’s
subset and b’s subset

✦ Find(a) returns the unique name for a’s subset

U
k

i
iSU

1=

=

∅=∩ ji SS

11R. Rao, CSE 326

Implementation Ideas and Tradeoffs

✦ How about an array implementation?
➭ N element array A: A[i] holds the class name for element i
➭ E.g. if 18 ~ 3, pick 3 as class name and set A[18] = A[3] = 3
➭ Running time for Find(i) = ? (i = some element)
➭ Running time for Union(i,j) = ? (i and j are class names)

12R. Rao, CSE 326

Implementation Ideas and Tradeoffs

✦ How about an array implementation?
➭ N element array A: A[i] holds the class name for element i
➭ E.g. if 18 ~ 3, pick 3 as class name and set A[18] = A[3] = 3
➭ Running time for Find(i) = O(1) (just return A[i])
➭ Running time for Union(i,j) = O(N)

If first N/2 elements have class name 1 and next N/2 have class
name 2, Union(1,2) needs to change names of N/2 items

✦ How about linked lists?
➭ One linked list for each equivalence class
➭ Class name = head of list
➭ Running time for Union(i,j) and Find(i) = ?

13R. Rao, CSE 326

Implementation Ideas and Tradeoffs

✦ How about linked lists?
➭ One linked list for each class
➭ Run time for Union(i,j) = O(1) (append one list to the other)
➭ Run time for Find(i) = O(N) (must scan all lists in worst case)

✦ Tradeoff between Union-Find – can we do both in O(1) time?
➭ N-1 Unions (the maximum possible) and M Finds = O(N2 + M) for

array or O(N + MN) for linked lists implementation
➭ Can we do this in O(M + N) time?

14R. Rao, CSE 326

Let’s find a new Data Structure

✦ Intuition: Finding the representative member (= class name)
for an element is like the opposite of searching for a key in a
given set

✦ So, instead of trees with pointers from each node to its
children, let’s use trees with a pointer from each node to its
parent

✦ Such trees are known as Up-Trees

15R. Rao, CSE 326

Up-Tree Data Structure

✦ Each equivalence class (or
discrete set) is an up-tree
with its root as its
representative member

✦ All members of a given set
are nodes in that set’s up-
tree

✦ Hash table maps input data
to a node. E.g. input string
to integer index

Up-trees are not necessarily binary!

a c

g

h

d b

e

f

{a,d,g,b,e} {c,f} {h}

NULL NULL NULL

16R. Rao, CSE 326

f

g ha

b

c

id

e

0 -1 0 1 2 -1 -1 7-1

0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)

A neat implementation trick for Up-Trees

✦ Forest of up-trees can
easily be stored in an
array (call it “up”)

✦ If node names are
integers or characters,
can use a very simple,
perfect hash function:
Hash(X) = X

✦ up[X]= parent of X;
= -1 if root

Array up:

17R. Rao, CSE 326

Example of Find

a c g h

d b

e

f i

find(f) = c
find(e) = a

Find: Just follow parent pointers to the root!

Runtime = ?

0 -1 0 1 2 -1 -1 7-1

0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)

Array up:

18R. Rao, CSE 326

Example of Union

a c g h

d b

e

f i

union(c,a)

Union: Just hang one root from the other!

Runtime = ?

0 -1 0 1 2 -1 -1 72

0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)

Array up:

Change a (from -1) to c (= 2)

19R. Rao, CSE 326

A more detailed example

e

f g ha b c d i

Union(b,e)

e f g ha b c d i

Initial Sets:

20R. Rao, CSE 326

Union(a,d)

e

f g ha b c d i

f g ha b c i

d e

A more detailed example…

21R. Rao, CSE 326

Union(a,b)

f g ha b c i

d e

f g ha

b

c i

d

e

A more detailed example…

22R. Rao, CSE 326

Union(d,e) – But (you say) d and e are not roots!
May be allowed in some implementations – do Find first to get roots
Since Find(d) = Find(e), union already done!

f g ha

b

c i

d

e

A more detailed example…

Thought-Provoking Question 1: While we’re finding e,
could we do something to speed up Find(e) next time?
(hold that thought!)

23R. Rao, CSE 326

Union(h,i)

f g ha

b

c i

d

e

f g ha

b

c

id

e

A more detailed example (continued)

24R. Rao, CSE 326

Union(c,f)

f g ha

b

c

id

e

f

g ha

b

c

id

e

A more detailed example…

25R. Rao, CSE 326

Union(c,a)

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e

A more detailed example

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e
TP Q2: Could we do a better job on
this union for faster finds in future?

26R. Rao, CSE 326

Implementation of Find and Union

public int Find(int X)

{ // Assumes X = Hash(X_Element)

// X_Element could be str/char etc.

if (up[X] < 0) // Root

return X; //Return root = set name

else

//Find parent

return Find(up[X]);

}

public void Union(int X,
int Y) {

//Make sure X, Y are
//roots

assert(up[X] < 0);

assert(up[Y] < 0);

up[Y] = X;

}

Runtime of Find: O(max height)
Height depends on previous Unions
Best case: 1-2, 1-3, 1-4,… O(1)
Worst case: 2-1, 3-2, 4-3,… O(N)

Runtime of Union: O(1)

Can we do better?

27R. Rao, CSE 326

Union(c,a)

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e
Could we do a better job on
this Union? What happened to e?

Let’s look back at our example…

28R. Rao, CSE 326

Speeding Up Union/Find: Union-by-Size

✦ For M Finds and N-1 Unions, worst case time is O(MN+N)
➭ Can we speed things up by being clever about growing our up-trees?

✦ Idea: In Union, always make root of larger tree the new root

✦ Why? Minimizes height of the new up-tree

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e Union-by-Size!

f

g ha

b c id

e

Union(c,a)

29R. Rao, CSE 326

Trick for Storing Size Information

✦ Instead of storing -1
in root, store up-tree
size as negative value
in root node

-5 1 -2 1 2 3 1 -1-

0 1 (a) 2 (b) 3 (c) 4 (d) 5 (e) 6 (f) 7 (g) 8 (h)

Array up:

a c

g

h

d b

e

f

30R. Rao, CSE 326

Union-by-Size Code

New run time of Union = ?

New run time of Find = ?

public void Union(int X, int Y) {

//X, Y are root nodes

//containing (-size) of up-trees

assert(up[X] < 0);

assert(up[Y] < 0);

if (-up[X] > -up[Y]) {

//update size of X and root of Y

up[X] += up[Y];

up[Y] = X;

}

else { //size of X <= size of Y

up[Y] += up[X];

up[X] = Y;

}

}

31R. Rao, CSE 326

Union-by-Size: Analysis

✦ Finds are O(max up-tree height) for a forest of up-trees containing N nodes

✦ Number of nodes in an up-tree of height h using union-by-size is ≥ 2h

✦ Pick up-tree with
max height

✦ Then, 2max height ≤ N

✦ max height ≤ log N

✦ Find takes O(log N)

Base case: h = 0, tree has 20 = 1 node
Induction hypothesis: Assume true for h < h′

Induction Step: New tree of height h′ was
formed via union of two trees of height h′-1
Each tree then has ≥ 2h′-1 nodes by the
induction hypothesis

So, total nodes ≥ 2h′-1 + 2h′-1 = 2h′

Therefore, True for all h

32R. Rao, CSE 326

Union-by-Height

✦ Textbook describes alternative strategy of Union-by-height

✦ Keep track of height of each up-tree in the root nodes

✦ Union makes root of up-tree with greater height the new root

✦ Same results and similar implementation as Union-by-Size
➭ Find is O(log N) and Union is O(1)

33R. Rao, CSE 326

Suspense-filled questions to ponder over…

✦ While doing a
find(e), can we do
something to speed
up future find(e)
calls?

✦ How much speed-
up can we get?

✦ What is the source
of the dark matter
in the universe?

f g ha
b

c i
d

e

34R. Rao, CSE 326

To be continued next class…

(same place, same time)

Meanwhile…

Finish reading chapter 8

