Lecture 18: The Dynamic Equivalence Problem
(ak.a. Digoint Sets, Union/Find etc.)

4+ The Plot:
< A new problem: Dynamic Equivalence
< The setting:
» Motivation and Definitions
< The players:
» Union and Find, two ADT operations
» Up-tree data structure
< Suspense-filled cliffhanger (to be continued...next time)

+ Covered in Chapter 8 of the textbook

R. Rao, CSE 326 Some of the materia on these slides are courtesy of: S. Wolfman, CSE 326, 2000 1

Motivation

+ Consider therelation “=" between integers
1. Foranyinteger A, A=A
2. Forintegers A and B, A =B meansthat B = A
3. ForintegersA,B,andC,A=BandB =C meansthat A =C

+ Consider cities connected by two-way roads
1. Alstrivially connected to itself
2. A isconnected to B means B is connected to A
3. If Alisconnected to B and B is connected to C, then A is
connected to C

+ Consider electrical connections between components on a

computer chip
< 1,2 and 3 are again satisfied

R. Rao, CSE 326 2

Equivalence Relations

+ Anequivalence relation R obeys three properties:
1. reflexive: for any x, XRx istrue
2. symmetric: for any x and y, XRy implies yRx
3. transitive: for any X, y, and z, xRy and yRz implies xRz

+ Preceding relations are all examples of equivalence relations

+ What are not equivalence relations?

R. Rao, CSE 326 3

Equivalence Relations

+ Anequivalence relation R obeys three properties:
1. reflexive: for any x, XRx istrue
2. symmetric: for any x and y, XRy implies yRx
3. transitive: for any X, y, and z, xRy and yRz implies xRz

+ Preceding relations are all examples of equivalence relations

+ What are not equivalence relations?
< What about “<” onintegers? (1 and 2 are violated)
< What about “<” onintegers? (2 is violated)
< What about “is having an affair with” in a soap opera?
» Victor i.h.aaw. Ashley i.h.a.aw. Brad does not imply
Victor i.h.aaw. Brad (i.h.aaw. is not transitive)

R. Rao, CSE 326 4

Equivalence Classes and Digoint Sets

+ Any equivalence relation R divides all the elements into
digoint sets of “equivalent” items

+ Let ~be an equivalence relation. Then, if A~B, then A and B
are in the same equivalence class.

+ Examples:
< Onacomputer chip, if ~ denotes“éelectrically connected,” then
sets of connected components form equivalence classes
< On amap, citesthat have two-way roads between them form
equivalence classes
< What are the equivalence classes for the relation “Modulo N”
applied to all integers?

R. Rao, CSE 326 5

Equivalence Classes and Digoint Sets

+ Let ~be an equivalence relation. Then, if A~B, then A and B
are in the same equivalence class.

+ Examples:
< Thereation “Modulo N” divides all integersin N equivalence
classes (for theremainders 0, 1, ..., N-1)
E.g. Under Mod 5:
0~5~10~15...
1~6~11~16...
2~7~12~ ...
3~8~13~...
4~9~14~ ...
(5 equivalence classes denoting remainders 0 through 4 when
divided by 5)

R. Rao, CSE 326 6

Union and Find: Problem Definition

+ Given aset of elements and some equivalence relation ~
between them, we want to figure out the equivalence classes

+ Given an element, we want to find the equivalence class it
belongs to
< E.g. Under mod 5, 13 belongs to the equivalence class of 3
< E.g. For the map example, want to find the equivalence class
of Redmond (all the cities it is connected to)

+ Given anew element, we want to add it to an equivalence
class (union)
< E.g. Under mod 5, since 18 ~ 13, perform a union of 18 with the
equivalence class of 13
< E.g. For the map example, Woodinvilleis connected to Redmond, so
add Woodinville to equivalence class of Redmond

R. Rao, CSE 326 7

Digoint Set ADT

+ Stores N unique elements

+ Two operations:
< Find: Given an element, return the name of its
equivalence class
< Union: Given the names of two equivalence classes,
merge them into one class (which may have a new name
or one of the two old names)

+ ADT divides elementsinto E equivalence classes, L<E <N
< Names of classes are arbitrary
< E.g. 1 through N, aslong as Find returns the same name for 2
elements in the same equivalence class

R. Rao, CSE 326 8

Digoint Set ADT Properties

+ Digjoint set equivalence property: every element of aDS
ADT belongsto exactly one set (its equivalence class)

+ Dynamic equivalence property: the set of an element can

ion

change after execution of aun
Example: find(4)
Initial Classes =
{148}, {23}, v
8
{6}, {7},
{5,9,10}

Name of equiv.
classunderlined nion(2,6) e

> {1.4.8}

R. Reo, CSE 326

Formal Definition (for Math lovers' eyes only)

+ GivenasetU={a, a,, ...

+ Maintain a partition of U, a

a,}
set of subsets (or equivalence

classes) of U denoted by {S,, S,, ... , S} such that:
< each pair of subsets § and § aredigoint: SNS, =Y
k

< together, the subsets cover

< each subset has a unique name

U:

U=US

+ Union(a, b) creates a new subset which isthe union of a's

subset and b’ s subset

+ Find(a) returns the unique name for a s subset

R. Reo, CSE 326

10

Implementation Ideas and Tradeoffs

+ How about an array implementation?
< N element array A: A[i] holds the class name for element i
< E.g.if 18 ~ 3, pick 3 asclassnameand set A[18] = A[3] =3
< Running timefor Find(i) =? (i = some element)
< Running time for Union(i,j) = ? (i and j are class names)

R. Rao, CSE 326 1

Implementation Ideas and Tradeoffs

+ How about an array implementation?
< N element array A: A[i] holds the class name for element i
< E.g.if 18 ~ 3, pick 3 asclassnameand set A[18] = A[3] =3
< Running time for Find(i) = O(1) (just return A[i])
< Running time for Union(i,j) = O(N)
If first N/2 dements have class name 1 and next N/2 have class
name 2, Union(1,2) needs to change names of N/2 items

+ How about linked lists?
< Onelinked list for each equivalence class
< Class name = head of list
< Running time for Union(i,j) and Find(i) = ?

R. Rao, CSE 326 12

Implementation Ideas and Tradeoffs

+ How about linked lists?
< Onelinked list for each class
< Runtimefor Union(i,j) = O(1) (append one list to the other)
< Runtimefor Find(i) = O(N) (must scan all listsin worst case)

+ Tradeoff between Union-Find — can we do both in O(1) time?
< N-1 Unions (the maximum possible) and M Finds = O(N? + M) for
array or O(N + MN) for linked listsimplementation
< Can wedothisin O(M + N) time?

R. Rao, CSE 326 13

Let’s find a new Data Structure

+ Intuition: Finding the representative member (= class name)
for an element is like the opposite of searching for akey ina
given set

+ S0, instead of trees with pointers from each node to its
children, let’s use trees with a pointer from each nodeto its
parent

+ Such trees are known as Up-Trees

R. Rao, CSE 326 14

Up-Tree Data Structure

+ Each equivalence class (or NULL NULL [NULL
discrete set) is an up-tree
with itsroot as its e

representative member

+ All members of agiven set o o
are nodes in that set’s up-
tree

+ Hash table maps input data

to anode. E.g. input string
to integer index {adgbe {cft {h}

Up-trees are not necessarily binary!

R. Rao, CSE 326 15

A neat implementation trick for Up-Trees

+ Forest of up-trees can
easily be stored in an
array (call it “up”) é}

+ If node names are
integers or characters,
can use avery simple,
perfect hash function:
Hash(X) = X

+ up [X] = parent of X;
=-1lifroot 0(a) 1(b) 2(c) 3(d) 4(e) 5(f) 6(q) 7(h) 8(i)
Array up: -110(-1]0 1 2 -1(-1|7

R. Rao, CSE 326 16

Example of Find

Find: Just follow parent pointersto the root!

find(f) = ¢ (a) i é} é}
find(e) = a
ofic ©

Runtime = ? G

0(a) 1(b) 2(c) 3(d) 4(e) 5(f) 6(g) 7(h) 8(i)
Arrayup: |10 -1 0 1|2 -1|-1|7
R. Rao, CSE 326 A — 17

Example of Union

Union: Just hang one root from the other!

Y
S5

Runtime=?

0(a) 1(b) 2(c) 3(d) 4(e) 5(f) 6(q) 7(h) 8(i)

Array up: 2 0(-1]0 1 2 1-1|-17

R. Reo, CSE 326 Change a (from-1) to c (= 2) 18

e detailed example

ééééééééé

éiéé ofcXc¥o

ailed exampl

@g@@mm

$'$'é> 5666

A more detailed example...

.

N~ (B 00600

R. Reo, CSE 326

21

A more detailed example...

Union(d,e) — But (you say) d and e are not roots!
May be allowed in some implementations — do Find first to get roots
Since Find(d) = Find(e), union already done!

fstoi0s

Thought-Provoking Question 1: While we're finding e,
could we do something to speed up Find(e) next time?
(hold that thought!)

R. Rao, CSE 326 22

A more detailed example (continued)

Union(h,i)

QEOEO0 | @ ééé%

R. Rao, CSE 326 23

A more detailed example...

Union(c,f)

88566 B4 &

R. Rao, CSE 326 24

A more detailed example

Union(c,a)
—)
(b) (@

TP Q2: Could we do a better job on
this union for faster finds in future?
R. Rao, CSE 326

é

25

Implementation of Find and Union

public int Find(int X)
{ // Assumes X = Hash(X Element)
// X_Element could be str/char etc.

if (up[X] < 0) // Root

return X; //Return root = set name
else

//Find parent

return Find(up[X]);

Runtime of Find: O(max height)

Height depends on previous Unions
Best case: 1-2, 1-3, 1-4,... O(1)

public void Union (int X,
int Y) {

//Make sure X, Y are
//roots

assert (up[X] < 0);
assert (up[Y] < 0);

up [Y] = X;

}

Runtime of Union: O(1)

Worst case: 2-1, 3-2, 4-3,... O(N) Can we do better?

R. Reo, CSE 326

26

Let’slook back at our example...

Union(c,a)

@fi -

Could we do a better job on é}
this Union? What happened to e?

R. Rao, CSE 326 27

Speeding Up Union/Find: Union-by-Size

+ For M Finds and N-1 Unions, worst casetime is O(MN+N)
< Can we speed things up by being clever about growing our up-trees?

4+ ldea In Union, always make root of larger treethe new root

+ Why? Minimizes height of the new up-tree
@ @ 606
(© (© E)
Union(c,a) Union-by-Size!

R. Rao, CSE 326 28

Trick for Storing Size Information

+ Instead of storing -1
inroot, store up-tree
Size as negative value
in root node }

0 1(d@ 2(b) 3(9) 4(d) 5(e) 6(f) 7(9) 8(h)

Arfayup: | - |5 1|21 |2 |3|1]|-1

R. Rao, CSE 326 29

Union-by-Size Code

public void Union(int X, int Y)
//X, Y are root nodes
//containing (-size) of up-trees

assert(up[X] < 0);
assert(up[Y] < 0);

if (-up[X] > -upl¥l) {
//update size of X and root of Y
up [X] += uplY];

up [Y] = X;
}
else { //size of X <= size of Y
up [Y] += upl[X]; . .
upX] = ¥; New run time of Union = ?
} .)
) New run time of Find = ?

R. Rao, CSE 326 30

Union-by-Size: Analysis

<+

Finds are O(max up-tree height) for aforest of up-trees containing N nodes

4+ Number of nodesin an up-tree of height h using union-by-sizeis> 2"

+ Pick up-treewith “ Base case: h = 0, treehas 2° = 1 node

max height Induction hypothesis: Assume true for h < b’
+ Then, 2mxhegt < N Induction Step: New tree of height h’ was
+ max height <log N formed via union of twp trees of height h'-1
_ Each tree then has > 27! nodes by the
+ Find takes O(log N) induction hypothesis

So, total nodes > 271 + 21 = i
Therefore, Truefor al h

R. Rao, CSE 326 31

Union-by-Height

+ Textbook describes alternative strategy of Union-by-height
+ Keep track of height of each up-tree in the root nodes
+ Union makes root of up-tree with greater height the new root

+ Same results and similar implementation as Union-by-Size
< Findis O(log N) and Unionis O(1)

R. Rao, CSE 326 32

Suspense-filled questions to ponder over...

+ Whiledoing a

. conwedo éécéé&
©

up future find(e)
calls?

+ How much speed-
up can we get?

4+ What isthe source
of the dark matter
in the universe?

R. Reo, CSE 326

To be continued next class...

(same place, same time)

Meanwhile...
Finish reading chapter 8

R. Reo, CSE 326

