CSE 326 Lecture 17: Out of Sorts

+ Items on Today’s Menu:
< How fast can we sort?
» Lower bound on comparison-based sorting
< Tricks to sort faster than the lower bound
< External versus Internal Sorting
< Practical comparisons of internal sorting algorithms
< Summary of sorting

4+ Covered in Chapter 7 of the textbook

R. Rao, CSE 326 1

How fast can we sort?

+ Heapsort, Mergesort, and Quicksort all runin O(N log N)
best case running time

+ Canwedo any better?

+ Can we believe hacker/hackeress Pat Swe (pronounced
“Sway”) from Swetown (formerly Softwareville), USA, who
claimsto have discovered an O(N log log N) sorting
algorithm?

R. Rao, CSE 326 2

The Answer is No! (if using comparisons only)

+ Recall our basic assumption: we can only compare two
elements at atime — how doesthis limit the run time?

+ Suppose you are given N elements
< Assume no duplicates — any sorting algorithm must also
work for this case

+ How many possible orderings can you get?
< Example: a, b, c (N=23)
< How many distinct sequences exist?

R. Rao, CSE 326 3

The Answer is No! (if using comparisons only)

+ How many possible orderings can you get?
< Example: a, b, c (N=23)
< Orderings. 1.abc 2.bca 3.cab 4.acb 5. bac
6.cba
< N = 3: We have 6 orderings = 3¢2¢1 = 3!

+ For N elements, how many possible orderings exist?

R. Rao, CSE 326 4

The Answer is No! (if using comparisons only)

+ How many possible orderings can you get?
< Example: a, b, c (N=23)
< Orderings. 1.abc 2.bca 3.cab 4.acb 5. bac
6.cba
< 6 orderings = 3¢2¢1 = 3!

N choices (N-1) choices 1 choice
+ For N elements: (f (
= N! orderings
R. Reo, CSE 326 5

A “Decision Tree” for Sorting N=3 Elements

Possble a<b<c, b<c<a,
Orderings C<a<b a<c<b,
b<a<c, c<b<a

Remaining a<b<0‘4b a>b b<c<a
Orderings ¢<a<b N /! b<a<c
a<c<b “Decision” c<b<a
a<E/\a>c b<‘</\9>c
a<b<c c<a<b b<c<a c<b<a
a<c<b b<a<c
b<y&>c C<y\>a
a<b<c a<c<bhb b<c<a b<a<c

Leaves contain all possible orderings of a, b, ¢
R. Reo, CSE 326 6

Decision Trees and Sorting

+ A Decision TreeisaBinary Tree such that:
< Each node = a set of orderings
< Each edge = 1 comparison
< Each leaf = 1 unique ordering
< How many leaves for N distinct elements?

+ Only 1 leaf has correct sorted ordering for given a, b, ¢

+ Each sorting algorithm corresponds to a decision tree
< Finds correct leaf by following edges (= comparisons)

4+ Run time > maximum no. of comparisons
< Depends on: depth of decision tree
< What is the depth of a decision tree for N distinct elements?

R. Rao, CSE 326 7

Lower Bound on Comparison-Based Sorting

+ Suppose you have a binary tree of depth d . How many
leaves can the tree have?
< E.g. Depth=1 — a most 2 leaves
< Depth=2 — a most 4 leaves, €tc.
< Depth = d — how many leaves?

R. Rao, CSE 326 8

Lower Bound on Comparison-Based Sorting

+ A binary tree of depth d has at most 2¢ leaves
©Eg depthd=1 2leaves,d=2 4leaves, €tc.
< Can prove by induction

+ Number of leavesL <2¢ d>logL

+ DecisiontreehasL = N! leaves
< Depth d > log(N!)
< What islog(N!)? (first, what islog(A<B)?)

R. Rao, CSE 326 9

Lower Bound on Comparison-Based Sorting

+ DecisiontreehasL = N! leaves
< Depth d > log(N!)
< What islog(N!)?
< log(N!) =log N + log(N-1) + ... log(N/2) + ... +log 1
>log N +log(N-1) + ... log(N/2) (N/2 terms only)
> (N/2)+log(N/2) = Q(N log N)

+ Result: Any sorting algorithm based on comparisons between
elements requires Q(N log N) comparisons

R. Rao, CSE 326 10

Lower Bound on Comparison-Based Sorting

+ DecisiontreehasL = N! leaves

< Depth d > log(N!)

< What islog(N!)? (first, what islog(A<B)?)

< log(N!) = Q(N log N)
+ Result: Any sorting algorithm based on comparisons between

elements requires Q(N log N) comparisons
+ Corollary: Run time of any comparison-based sorting algorithm

iIsQ(N log N)

< Can never get an O(N log log N) comparison-based sorting

algorithm (sorry, Pat Swe!)

R. Rao, CSE 326 11

Hey! (you say)...what about Bucket Sort?

+ Recall: Bucket sort
<~ Elementsareintegersintherange 0 to B-1
< ldea: Array Count has B slots (“buckets’)
1. Initialize: Count[i] =0 fori=0to B-1
2. Given input integer i, Count[i]++
3. After reading all inputs, scan Count][i] for i =0to B-1
and print i if Count[i] is non-zero

+ What isthe running time for sorting N integers?

R. Rao, CSE 326 12

What' s up with Bucket Sort?

+ Recall: Bucket sort Elements are integers known to
always be intherange 0 to B-1

+ What isthe running time for sorting N integers?
< Running Time: O(B+N)
» B to zero/scan the array and N to read the input
< If B isO(N), then running time for Bucket sort = O(N)
< Doesn’'t thisviolatethe Q(N log N) lower bound
result??

R. Rao, CSE 326 13

The Scoop behind Bucket Sort

+ Recall: Bucket sort Elements are integers known to
always be intherange 0 to B-1

+ What isthe running time for sorting N integers?
< Running Time: O(B+N)
< If B is®(N), then running time for Bucket sort = O(N)
< Doesn't thisviolatethe O(N log N) lower bound

result??

+ No-When wedo Count[i]++, we are comparing one
element with all B elements, not just two elements
< Not regular 2-way comparison-based sorting

R. Rao, CSE 326 14

Radix Sort = Stable Bucket Sort

+ Problem: What if number of buckets needed is too large?

+ Recall: Stable sort = a sort that does not change order of
items with same key

+ Radix sort = stable bucket sort on “dices’ of key
1. Divide integerg/strings into digits/characters

2. Bucket-sort from least significant to most significant

digit/character
» Useslinked lists — see Chap 3 for an example

< Stability ensures keys already sorted stay sorted
» Takes O(P(B+N)) time where P = number of digits

R. Rao, CSE 326 15
Radix Sort Example
478 721 03 003
537 | Bucket 3 Bucket 09 Bucket 009
9 sort 123| sort 721| sort 038
1s 10's 100's
721 | digit 537 digit 123| digit 067
3 | 67 | s37 | 123
38 478 38 478
123 38 67 537
67 9 478 721

R. Rao, CSE 326 16

Internal versus External Sorting

+ So far assumed that accessing A[i] isfast — Array A is stored
in internal memory (RAM)
< Algorithms so far are good for internal sorting

+ What if A isso largethat it doesn't fit in internal memory?
< Data on disk or tape
< Delay in accessing AJi]
» E.g. need to spin disk and move head

+ Need sorting algorithms that minimize disk/tape accesses
< Enter...External sorting

R. Rao, CSE 326 17

External Sorting

+ Sorting algorithms that minimize disk/tape accesses
< External sorting — Basic Idea:
» Load chunk of datainto RAM
e Sort thisdata
e Storethis “run” back on disk/tape
» Repeat for al data
» Then: Use the Merge routine from Mergesort to merge
the sorted runs
» Repeat until you have only one run (one sorted chunk)
» Text gives some examples

+ Waittaminute!! How relevant is external sorting?

R. Rao, CSE 326 18

Internal Memory is getting dirt cheap...

Price (in US$) for 1 MB of RAM

AENRIERRRREREE R AR RN RI RN N AN RNE AN R IR NRNE|
Auverage

%f%‘.m"“kf

T T T T T T T T T T T T T T I T T T T T T T T T T e it
SFAprduldcto8dprduldct99dprduletBBdprduldctal Apr

From: http://www.macresource.com/mrp/ramwatch/trend.shtml
R. Reo, CSE 326 19

LN

D = e = T PO G000 O o fa CNCA CACATS T

LG AR R R O R R R R R R R R
[i) T] giTd) st T) el el fcn | g L) Rl Dicn] gty el g sl]]
2SS ASAE AR ESAE NEN S0NEN @S

External Sorting: A (soon-to-be) Relic of the Past?

+ Price of internal memory is dropping, memory sizeis
increasing, both at exponential rates (Moore's law)

+ Quitelikely that in the future, datawill probably fit in
internal memory for reasonably large input sizes

+ Tapes seldom used these days — disks are faster and getting
cheaper with greater capacity

+ So, for most practical purposes, internal sorting algorithms
such as Quicksort should prove to be sufficiently efficient

R. Rao, CSE 326 20

Okay...so let’ stalk about practical performance

Insertion sort ~_ — Heapsort
2 —— Shellsort
C
O 0
§ Quicksort
=
q) 10
£ J
P [Datafrom
g textbook
Chap. 7]
R. Reo, CSE 326 Input Size N ”

Summary of Sorting

+ Sorting choices:
< O(N?) — Bubblesort, Selection Sort, Insertion Sort
< O(NX) — Shellsort (x = 3/2, 4/3, 2, etc. depending on incr. seq.)
< O(N log N) average case running time:
» Heapsort: needs 2 comparisons to move data (between
2 children and parent) —may not be fast in practice (see

graph)
» Mergesort: easy to code but uses O(N) extra space
» Quicksort: fastest in practice but trickier to code, O(N?)
worgt case
< O(P-N) — Radix sort (using Bucket sort) for special cases
where keys are P digit integers/strings

R. Rao, CSE 326 22

The Practical Side of Sorting

+ Practical Choices:
< When N is large, use Quicksort with median-of-three pivot
< For small N (< 20), N log N sorts are slower due to extra
overhead (larger constants in big-oh function)
< For N < 20, use Insertion sort
< A Good Heurigtic:
» In Quicksort, do insertion sort when sub-array size < 20

(instead of partitioning) and return this sorted sub-array
for further processing

» Speeds up the running time

R. Rao, CSE 326 23

Next time:
Data Structures for Union and Find operations
(sorry, not the kind seen in Frat parties)

To do:
Finish chapter 7
Read chapter 8

R. Rao, CSE 326 24

