
1R. Rao, CSE 326

CSE 326 Lecture 15: Midterm Review

✦ Midterm details:
➭ Chapters 1-6 in the textbook
➭ Closed book, closed notes except:

➧ You may bring one 8 ½’’ x 11’’ sheet of handwritten notes
➭ Format: 5 questions, 100 points total
➭ Time: Wednesday, class time 12:30-1:20 (50 minutes)
➭ Practice midterm and solutions are on class website
➭Midterm will contain space for answers; no bluebooks
➭ Bring pens/sharpened pencils (and sharpened minds)

2R. Rao, CSE 326

Midterm Review: Math Background

✦ Know definitions of Big-Oh, little-oh, big-omega, and theta:
➭ T(N) = O(f(N)) if there are positive constants c and n0

such that T(N) ≤ cf(N) for N ≥ n0.

✦ Think of O(f(N)) as “less than or equal to” f(N)
➭ Upper bound

✦ Think of Ω(f(N)) as “greater than or equal to” f(N)
➭ Lower bound

✦ Think of Θ(f(N)) as “equal to” f(N) “Tight” bound
➭ Same growth rate

✦ Think of o(f(N)) as “strictly less than” f(N)
➭ Strict upper bound
➭ T(N) = o(f(N)) means f(N) has faster growth rate than T(N)

3R. Rao, CSE 326

Summations

∑
=

+
=

N

i

NN
i

1 2

)1(
Run time of program segment:

for (i = 1; i <= N; i++)

for (j = 1; j <= i; j++)

<print �Hello�>

1

11

0 −
−

=
+

=
∑ A

A
A

NN

i

i

-1k and N largefor
|1|

1

1

≠
+

≈
+

=
∑ k

N
i

kN

i

k

122 1

0

−= +

=
∑ N

N

i

i

4R. Rao, CSE 326

Recurrences

✦ Used to analyze run time T(N) of recursive function for input
size N
➭ Write down cost of each line of function
➭ Recursive calls: write cost in terms of T and new input size N'
➭ E.g. T(N) = (cost for non-recursive lines) + T(N-1)

int sum (int [] v, int num)
{ if (num == 0) return 0;

else return v[num-1] + sum(v,num-1); }

• T(num) = constant + T(num-1)

= 2*constant + T(num-2) =…= num*constant + constant

= Θ(num)

5R. Rao, CSE 326

Lists, Stacks, and Queues

✦ Lists: Insert, Find, Delete
➭ Singly-linked lists with header node
➭ Doubly-linked and Circularly-linked
➭ Run time and space needed for array-based versus pointer-based

✦ Stacks: Push, Pop
➭ Know what push and pop do
➭ Pointer versus array implementation
➭ Use of stacks in balancing symbols and function calls

✦ Queues: Enqueue and Dequeue
➭ Array-based implementation using Rear and Front, and modulo

arithmetic for wrap-around

6R. Rao, CSE 326

Trees

✦ Terminology: Root, children, parent, path, height, depth, etc.
➭ Height of a node is maximum path length to any leaf
➭ Height of tree is height of root
➭ Single node tree has height and depth 0

✦ Recursive definition of tree
➭ Null or a root node with (sub)trees as children

✦ Preorder, postorder and inorder traversal of a tree
➭ Implementation using recursion or a stack

✦ Minimum and maximum depth of a binary tree

7R. Rao, CSE 326

Binary Search Trees

✦ BSTs: What makes a binary tree a BST?
➭ Know how to do Find, Insert, and Delete in example BSTs

✦ AVL tree: What makes a BST an AVL tree?
➭ Balanced due to restriction on heights of left/right subtrees
➭ Upper bound on height of AVL tree of N nodes
➭ Worst case run time for operations
➭ Know what happens when you do Inserts into an AVL tree
➭ Re-balancing tree using Single or Double rotation

✦ Splay trees: No explicit balance condition but accessing an
item causes splaying (rotations); item moves to root
➭ Amortized/worst case running time for operations
➭ Know what happens when you do Find/Insert/Delete

8R. Rao, CSE 326

B-Trees

✦ Nodes have up to M children, with M-1 keys
➭ Children to the right of key k contain values ≥ k

✦ All leaf nodes at same height

✦ Know how to do Find, Insert, and Delete in example B-trees
➭ Insert may cause leaf node to overflow and split, causing parent

to split etc.
➭ Deletion may cause leaf to become less than half full, causing a

merge with sibling, which may cause parent to merge etc.

✦ Find: Run time is O(depth*log M) = O(log M/2 N*log M) =
O(log N)
➭ Insert/Delete: Run time is O(depth*M) = O((M/log M)*log N)

9R. Rao, CSE 326

Priority Queues: Binary Heaps

✦ What is a binary heap?
➭ Understand array implementation: parent and children in array
➭ d-heaps: d children per node

✦ Main operations: FindMin, Insert, DeleteMin
➭ Know how to Insert/DeleteMin in example binary heaps
➭ Insert: Add item to end of array, then percolate up
➭ DeleteMin: Move item at end of array to top, then percolate

down

✦ Other operations: DecreaseKey, IncreaseKey, Merge

✦ What is the depth and running time of operations for binary
heap of N nodes?

✦ No need to know details of leftist or skew heaps

10R. Rao, CSE 326

Binomial Queues

✦ Recursive definition of binomial trees
➭ Contains one or more trees Bi, each containing exactly 2i nodes

✦ Binomial queue = forest of binomial trees, each obeying heap
property

✦ Main operation: Merge two binomial queues
➭ Start from i = 0 and attach pairs of Bi to create Bi+1

✦ Insert item: Merge original BQ with new one-item BQ

✦ DeleteMin: Delete smallest root node and merge its subtrees
with original BQ

✦ First Child/Next Sibling implementation and run time analysis

11R. Rao, CSE 326

Hashing

✦ Know how hash functions work:
➭ Hash(X) = X mod TableSize
➭ TableSize is chosen to be a prime number in real-world

applications

✦ Know what the load factor λ of a hash table means and how
the run time of Find/Insert is related to λ

12R. Rao, CSE 326

Hashing and Collisions

✦ Know how the different collision resolution methods work:
➭ Chaining: colliding values are stored in a linked list
➭ Open addressing with linear probing: look linearly (Hash(X)

+ i, i = 0, 1, 2, …) for empty slot; clustering problem
➭ Open addressing with quadratic probing: look using squares

(Hash(X) + i2, i = 0, 1, 2, …) for empty slot
➧ Theorem guarantees a slot will be found if TableSize prime

and array less than half full
➭ Double Hashing: look for empty slot using a second hash

function (Hash(X) + i·Hash2(X), i = 0, 1, 2, …)
➭ Rehashing: when probing is used and the table starts to get

full, allocate a bigger table and rehash all stored values

13R. Rao, CSE 326

Next Class: Midterm exam

To Do:

Hash Chapters 1-6 into those good ol’ gray cells

Minimize collisions

Practice the practice midterm

