CSE 326 Lecture 14: Sorting

\rightarrow Today's Topics:
\Rightarrow Elementary Sorting Algorithms:

- Bubble Sort
- Selection Sort
- Insertion Sort
\Rightarrow Shellsort
- Covered in Chapter 7 of the textbook

Sorting: Definitions

- Input: You are given an array A of data records, each with a key (which could be an integer, character, string, etc.).
\Rightarrow There is an ordering on the set of possible keys
\Rightarrow You can compare any two keys using <, >, ==
- For simplicity, we will assume that $\mathrm{A}[\mathrm{i}]$ contains only one element - the key
- Sorting Problem: Given an array A, output A such that:

For any i and j , if $\mathrm{i}<\mathrm{j}$ then $\mathrm{A}[\mathrm{i}] \leq \mathrm{A}[\mathrm{j}]$

- Internal sorting: all data in main memory
- External sorting: data on disk

Why Sort?

\downarrow Sorting algorithms are among the most frequently used algorithms in computer science
\Rightarrow Crucial for efficient retrieval and processing of large volumes of data. E.g. Database systems

- Allows binary search of an N -element array in $\mathrm{O}(\log \mathrm{N})$ time
- Allows $\mathrm{O}(1)$ time access to k th largest element in the array for any k
- Allows easy detection of any duplicates

Sorting: Things to Think about...

\uparrow Space: Does the sorting algorithm require extra memory to sort the collection of items?
\Rightarrow Do you need to copy and temporarily store some subset of the keys/data records?
\Rightarrow An algorithm which requires $\mathrm{O}(1)$ extra space is known as an in place sorting algorithm

Sorting: More Things to Think about...

- Stability: Does it rearrange the order of input data records which have the same key value (duplicates)?
\Rightarrow E.g. Given: Phone book sorted by name. Now sort by county - is the list still sorted by name within each county?
\Leftrightarrow Extremely important property for databases
\Rightarrow A stable sorting algorithm is one which does not rearrange the order of duplicate keys

Sorting 101: Bubble Sort

- Idea: "Bubble" larger elements to end of array by comparing elements i and $i+1$, and swapping if $A[i]>A[i+1]$
\Rightarrow Repeat from first to end of unsorted part
\uparrow Example: Sort the following input sequence:
$\Rightarrow 21,33,7,25$

Sorting 101: Bubblesort

```
/* Bubble sort pseudocode for integers
* A is an array containing N integers */
for(int i=0;i<N;i++) {
    /* From start to the end of unsorted part */
    for(int j=1;j<(N-i);j++) {
        /* If adjacent items out of order, swap */
        if(A[j-1] > A[j] ) SWAP(A[j-1],A[j]);
    }
}
```

\star Stable? In place? Running time $=$?

Sorting 102: Selection Sort

\uparrow Bubblesort is stable and in place, but $\mathrm{O}\left(\mathrm{N}^{2}\right)$ - can we do better by moving items more than 1 slot per step?

- Idea: Scan array and select smallest key, swap with A[1]; scan remaining keys, select smallest and swap with A[2]; repeat until last element is reached.
- Example: Sort the following input sequence:
$\Rightarrow 21,33,7,25$
\uparrow Is selection sort stable (suppose you had another 33 instead of 7)? In place?
\downarrow Running time $=$?

Sorting 102: Selection Sort

\uparrow Bubblesort is $\mathrm{O}\left(\mathrm{N}^{2}\right)$ - can we do better by moving items more than 1 slot per step?

- Idea: Scan array and select smallest key, swap with A[1]; scan remaining keys, select smallest and swap with $\mathrm{A}[2]$; repeat until last element is reached.
\uparrow Example: Sort the following input sequence:
$\Rightarrow 21,33,7,25$
\uparrow NOT STABLE. In place (extra space $=1$ temp variable).
\downarrow Running time $=\mathrm{N}$ steps with $\mathrm{N}-1, \ldots, 1$ comparisons

$$
=\mathrm{N}-1+\ldots+1=\mathrm{O}\left(\mathrm{~N}^{2}\right)
$$

Sorting 103: Insertion Sort

\downarrow What if first k elements of array are already sorted? \Rightarrow E.g. 4, 7, 12, 5, 19, 16

- Idea: Can insert next element into proper position and get $\mathrm{k}+1$ sorted elements, insert next and get $\mathrm{k}+2$ sorted etc.
$\Rightarrow 4,5,7,12,19,16$
$\Rightarrow 4,5,7,12,19,16$
$\Rightarrow 4,5,7,12,16,19$ Done!
\Rightarrow Overall, N-1 passes needed
\Rightarrow Similar to card sorting...
\Leftrightarrow Start with empty hand
\Rightarrow Keep inserting...

Sorting 103: Insertion Sort

```
/* Insertion sort pseudocode for integers
* A is an array containing N integers */
    int j, P, Tmp;
for(P = 1; P < N; P++ ) {
    Tmp = A[ P ];
    for(j = P; j > 0 &&& A[ j - 1 ] > Tmp; j-- )
                A[ j ] = A[ j - 1 ]; //Shift A[j-1] to right
        A[ j ] = Tmp; // Found a spot for A[P] (= Tmp)
    }
```

\star Is Insertion sort in place? Stable?
\downarrow Running time $=$?

Sorting 103: Insertion Sort

```
int j, P, Tmp;
for(P = 1; P < N; P++ ) {
        Tmp = A[ P ];
        for(j = P; j > 0 &&& A[ j - 1 ] > Tmp; j-- )
            A[ j ] = A[ j - 1 ]; //Shift A[j-1] to right
        A[ j ] = Tmp; // Found a spot for A[P] (= Tmp)
    }
```

\uparrow Insertion sort: In place $(\mathrm{O}(1)$ space for Tmp$)$ and stable
\downarrow Running time: Worst case is reverse order input $=\Theta\left(N^{2}\right)$ \Rightarrow Best case is input already sorted $=\mathrm{O}(\mathrm{N})$.

Lower Bound on Simple Sorting Algorithms

\rightarrow An inversion is a pair of elements in wrong order $\Rightarrow \mathrm{i}<\mathrm{j}$ but $\mathrm{A}[\mathrm{i}]>\mathrm{A}[\mathrm{j}]$
\uparrow Our simple sorting algorithms so far swap adjacent elements (explicitly or implicitly): swapping removes 1 inversion
\Rightarrow Running time proportional to no. of inversions in array
\downarrow Given N distinct keys, total of $\mathrm{N}(\mathrm{N}-1) / 2$ possible inversions. Average list contains: $\mathrm{N}(\mathrm{N}-1) / 4$ inversions
\Rightarrow Average running time of Insertion sort is $\Theta\left(\mathrm{N}^{2}\right)$
\uparrow Any sorting algorithm that swaps adjacent elements requires $\Omega\left(\mathrm{N}^{2}\right)$ time: Each swap removes only one inversion

Shellsort: Breaking the Quadratic Barrier

- Main Insight: Insertion sort runs fast on nearly sorted sequences do several passes of Insertion sort on different subsequences of elements
- Example: Sort 19, 5, 2, 1

1. Do Insertion sort on subsequences of elements spaced apart
by 2 : $1^{\text {st }}$ and $3^{\text {rd }}, 2^{\text {nd }}$ and $4^{\text {th }}$
$\Rightarrow \underline{19}, 5, \underline{2}, 1 \quad \underline{2}, 1, \underline{19}, 5$
2. Do Insertion sort on subsequence of elements spaced apart by 1 :
$\Rightarrow 2,1,19,5$
1,2, 19, 5
1,2, 19, 5
$\underline{1,2,5,19}$

- Note: Fewer number of shifts than plain Insertion sort
$\Rightarrow 4$ versus 6 for this example

Shellsort: Overview

\uparrow Named after Donald Shell - first algorithm to achieve o(N^{2}) \Rightarrow Running time is $\mathrm{O}\left(\mathrm{N}^{x}\right)$ where $x=3 / 2,5 / 4,4 / 3, \ldots$, or 2 depending on "increment sequence"
\uparrow In our example, we used the increment sequence: $\mathrm{N} / 2, \mathrm{~N} / 4$, $\ldots, 1=2,1$ (for $\mathrm{N}=4$ elements)
\Rightarrow This is Shell's original increment sequence

- Shellsort: Pick an increment sequence $h_{t}>h_{t-1}>\ldots>h_{1}$ \Rightarrow Start with $\mathrm{k}=\mathrm{t}$
\Rightarrow Insertion sort all subsequences of elements that are h_{k} apart so that $\mathbf{A}[\mathbf{i}] \leq \mathbf{A}\left[\mathbf{i}+\mathbf{h}_{\mathbf{k}}\right]$ for all i (known as an h_{k}-sort)
\Rightarrow Go to next smaller increment $\mathrm{h}_{\mathrm{k}-1}$ and repeat until $\mathrm{k}=1$ (note: $\mathrm{h}_{1}=1$)

Shellsort: An Example (a pathetic one)

\uparrow Example: Shell's original sequence: $\mathrm{h}_{\mathrm{t}}=\mathrm{N} / 2$ and $\mathrm{h}_{\mathrm{k}}=\mathrm{h}_{\mathrm{k}+1} / 2$
\Rightarrow Sort 21, 33, 7, 25
\Rightarrow Try it! (What is the increment sequence?)

Shellsort: An Example

- Example: Shell's original sequence: $\mathrm{h}_{\mathrm{t}}=\mathrm{N} / 2$ and $\mathrm{h}_{\mathrm{k}}=\mathrm{h}_{\mathrm{k}+1} / 2$ \Rightarrow Sort 21, 33, 7, $25 \quad(\mathrm{~N}=4$, increment sequence $=2,1)$ $\Rightarrow 7,25,21,33$ (after 2 -sort)
$\Rightarrow 7,21,25,33$ (after 1-sort)

Shellsort: The Nuts and Bolts

/* Shell sort pseudocode for integers

* A is an array containing N integers */
int i, j, Increment, Tmp;
for (Increment $=\mathrm{N} / 2$; Increment >0; Increment $/=2$) for ($i=$ Increment; $i<N$; $i++$) \{ Tmp $=A\left[\begin{array}{l}\text { i }] ;\end{array}\right.$
for $(j=i ; j>=$ Increment $\& \&$
A[j - Increment] > Tmp ; j -= Increment)
$A[j]=A[j$ - Increment];
$A[j]=T m p ;$
\}
- Note: The two inner for loops correspond almost exactly to the code for Insertion sort!
\star Running time $=?($ What is the worst case ? $)$

Shellsort: Run Time Analysis

- Simple to code but hard to analyze
\Rightarrow Run time depends on increment sequence
\uparrow What about the increment sequence $\mathrm{h}_{\mathrm{k}}=\mathrm{N} / 2, \mathrm{~N} / 4, \ldots, 2,1$?
\Rightarrow Upper bound
- Shellsort does h_{k} insertion sorts with $\mathrm{N} / \mathrm{h}_{\mathrm{k}}$ elements for $\mathrm{k}=1$ to t
- Running time $=\mathrm{O}\left(\sum_{\mathrm{k}=1 \ldots \mathrm{t}} \mathrm{h}_{\mathrm{k}}\left(\mathrm{N} / \mathrm{h}_{\mathrm{k}}\right)^{2}\right)$

$$
=\mathrm{O}\left(\mathrm{~N}^{2} \sum_{\mathrm{k}=1 \ldots \mathrm{t}} 1 / \mathrm{h}_{\mathrm{k}}\right)=\mathrm{O}\left(\mathrm{~N}^{2}\right)
$$

\Rightarrow Lower bound

- What is the worst case?

Shellsort: Run Time Analysis

\uparrow What about the increment sequence $\mathrm{N} / 2, \mathrm{~N} / 4, \ldots, 2,1$?
\Rightarrow Lower bound

- What is the worst case?
- Suppose smallest elements in odd positions, largest in even positions in sorted order:
$\underline{2}, 11, \underline{4}, 12, \underline{6}, 13, \underline{8}, 14$
- None of the passes N/2, N/4, .., 2 do anything!
- Last pass ($\mathrm{h}_{1}=1$) must shift $\mathrm{N} / 2$ smallest elements to first half and N/2 largest elements to second half
- 4 shifts 1 slot, 6 shifts 2,8 shifts $3, \ldots=1+2+3+\ldots$ ($\mathrm{N} / 2$ terms)
- Run time $=$ At least N^{2} steps $=\Omega\left(\mathbf{N}^{2}\right)$

Shellsort: Can we do better?

\checkmark The reason we got $\Omega\left(\mathbf{N}^{2}\right)$ was because of increment sequence \Rightarrow Adjacent increments have common factors (e.g. 8, 4, 2, 1) \Rightarrow We keep comparing same elements over and over again
\Rightarrow Need to increment so that different elements are compared in different passes
\uparrow Is there a better increment sequence than $\mathrm{N} / 2, \mathrm{~N} / 4, \ldots, 2,1$?

Shellsort: How to Break the $\mathrm{O}\left(\mathrm{N}^{2}\right)$ Barrier

\rightarrow Hibbard's increment sequence: $2^{\mathrm{k}}-1,2^{\mathrm{k}-1}-1, \ldots, 7,3,1$
\Rightarrow Adjacent increments have no common factors
\Rightarrow Worst case running time of Shellsort with Hibbard's increments $=\Theta\left(\mathbf{N}^{1.5}\right) \quad($ Theorem 7.4 in text $)$
\Leftrightarrow Average case running time for Hibbard's $=\mathbf{O}\left(\mathbf{N}^{1.25}\right)$ in simulations but nobody has been able to prove it! (next homework assignment?)

- Final thoughts on the "Simple Sorts" discussed today:
\Rightarrow Insertion sort good for small input sizes (~ 20)
\Rightarrow Shellsort better for moderately large inputs $(\sim 10,000)$

After Midterm: The crème de la crème of Sorts:
Heapsort, Mergesort, and Quicksort
Next Class: Midterm Review
To Do:
Midterm on Wed Feb 12: Read Chapters 1 through 6 HW \#3 due: Thu Feb 13

