
1R. Rao, CSE 326

CSE 326 Lecture 14: Sorting

✦ Today’s Topics:
➭ Elementary Sorting Algorithms:
➧ Bubble Sort
➧ Selection Sort
➧ Insertion Sort

➭ Shellsort

✦ Covered in Chapter 7 of the textbook

2R. Rao, CSE 326

Sorting: Definitions

✦ Input: You are given an array A of data records, each with a key
(which could be an integer, character, string, etc.). 
➭ There is an ordering on the set of possible keys
➭ You can compare any two keys using <, >, ==

✦ For simplicity, we will assume that A[i] contains only one 
element – the key

✦ Sorting Problem: Given an array A, output A such that: 
For any i and j, if i < j then A[i] ≤ A[j]

✦ Internal sorting: all data in main memory

✦ External sorting: data on disk



3R. Rao, CSE 326

Why Sort?

✦ Sorting algorithms are among the most frequently used 
algorithms in computer science
➭ Crucial for efficient retrieval and processing of large 

volumes of data. E.g. Database systems

✦ Allows binary search of an N-element array in O(log N) time

✦ Allows O(1) time access to kth largest element in the array 
for any k

✦ Allows easy detection of any duplicates

4R. Rao, CSE 326

Sorting: Things to Think about…

✦ Space: Does the sorting algorithm require extra memory to 
sort the collection of items?
➭ Do you need to copy and temporarily store some subset 

of the keys/data records?
➭ An algorithm which requires O(1) extra space is known 

as an in place sorting algorithm 



5R. Rao, CSE 326

Sorting: More Things to Think about…

✦ Stability: Does it rearrange the order of input data records 
which have the same key value (duplicates)? 
➭ E.g. Given: Phone book sorted by name. Now sort by 

county – is the list still sorted by name within each county?
➭ Extremely important property for databases 
➭ A stable sorting algorithm is one which does not 

rearrange the order of duplicate keys

6R. Rao, CSE 326

Sorting 101: Bubble Sort

✦ Idea: “Bubble” larger elements to end of array by comparing 
elements i and i+1, and swapping if A[i] > A[i+1]
➭ Repeat from first to end of unsorted part

✦ Example: Sort the following input sequence:
➭ 21, 33, 7, 25



7R. Rao, CSE 326

Sorting 101: Bubblesort

/* Bubble sort pseudocode for integers
*  A is an array containing N integers */

for(int i=0;i<N;i++) {
/* From start to the end of unsorted part */
for(int j=1;j<(N-i);j++) {
/* If adjacent items out of order, swap */
if( A[j-1] > A[j] ) SWAP(A[j-1],A[j]); 

}
}

✦ Stable? In place? Running time = ?

8R. Rao, CSE 326

Sorting 102: Selection Sort

✦ Bubblesort is stable and in place, but O(N2) – can  we do 
better by moving items more than 1 slot per step?

✦ Idea: Scan array and select smallest key, swap with A[1];
scan remaining keys, select smallest and swap with A[2];
repeat until last element is reached.

✦ Example: Sort the following input sequence:
➭ 21, 33, 7, 25

✦ Is selection sort stable (suppose you had another 33 instead 
of 7)? In place?

✦ Running time = ?



9R. Rao, CSE 326

Sorting 102: Selection Sort

✦ Bubblesort is O(N2) – can  we do better by moving items 
more than 1 slot per step?

✦ Idea: Scan array and select smallest key, swap with A[1]; 
scan remaining keys, select smallest and swap with A[2]; 
repeat until last element is reached.

✦ Example: Sort the following input sequence:
➭ 21, 33, 7, 25

✦ NOT STABLE. In place (extra space = 1 temp variable). 

✦ Running time = N steps with N-1, …, 1 comparisons
= N-1 + … + 1 = O(N2) 

10R. Rao, CSE 326

Sorting 103: Insertion Sort 

✦ What if first k elements of array are already sorted?
➭ E.g. 4, 7, 12, 5, 19, 16

✦ Idea: Can insert next element into proper position and get 
k+1 sorted elements, insert next and get k+2 sorted etc.
➭ 4, 5, 7, 12, 19, 16
➭ 4, 5, 7, 12, 19, 16
➭ 4, 5, 7, 12, 16, 19 Done!
➭ Overall, N-1 passes needed
➭ Similar to card sorting…
➭ Start with empty hand
➭ Keep inserting…

$

A

$

K

$

10
$

2
Shift right



11R. Rao, CSE 326

Sorting 103: Insertion Sort

/* Insertion sort pseudocode for integers
*  A is an array containing N integers */

int j, P, Tmp;
for(P = 1; P < N; P++ ) {
Tmp = A[ P ];
for(j = P; j > 0 && A[ j - 1 ] > Tmp; j-- )

A[ j ] = A[ j - 1 ]; //Shift A[j-1] to right
A[ j ] = Tmp; // Found a spot for A[P] (= Tmp)

}        

✦ Is Insertion sort in place? Stable?
✦ Running time = ?

12R. Rao, CSE 326

Sorting 103: Insertion Sort

int j, P, Tmp;
for(P = 1; P < N; P++ ) {
Tmp = A[ P ];
for(j = P; j > 0 && A[ j - 1 ] > Tmp; j-- )

A[ j ] = A[ j - 1 ]; //Shift A[j-1] to right
A[ j ] = Tmp; // Found a spot for A[P] (= Tmp)

}

✦ Insertion sort: In place (O(1) space for Tmp) and stable
✦ Running time: Worst case is reverse order input = Θ(N2)
➭ Best case is input already sorted = O(N). 



13R. Rao, CSE 326

Lower Bound on Simple Sorting Algorithms

✦ An inversion is a pair of elements in wrong order
➭ i < j but A[i] > A[j]

✦ Our simple sorting algorithms so far swap adjacent elements 
(explicitly or implicitly): swapping removes 1 inversion
➭ Running time proportional to no. of inversions in array

✦ Given N distinct keys, total of N(N-1)/2 possible inversions. 
Average list contains: N(N-1)/4 inversions
➭ Average running time of Insertion sort is Θ(N2)

✦ Any sorting algorithm that swaps adjacent elements requires 
Ω(N2) time: Each swap removes only one inversion

14R. Rao, CSE 326

Shellsort: Breaking the Quadratic Barrier

✦ Main Insight: Insertion sort runs fast on nearly sorted 
sequences do several passes of Insertion sort on 
different subsequences of elements 

✦ Example: Sort 19, 5, 2, 1
1. Do Insertion sort on subsequences of elements spaced apart 

by 2: 1st and 3rd, 2nd and 4th

➭ 19, 5, 2, 1 2, 1, 19, 5
2. Do Insertion sort on subsequence of elements spaced apart 

by 1:

➭ 2, 1, 19, 5 1, 2, 19, 5 1, 2, 19, 5 1, 2, 5, 19

✦ Note: Fewer number of shifts than plain Insertion sort
➭ 4 versus 6 for this example



15R. Rao, CSE 326

Shellsort: Overview

✦ Named after Donald Shell – first algorithm to achieve o(N2)
➭ Running time is O(Nx) where x = 3/2, 5/4, 4/3, …, or 2 

depending on “increment sequence”

✦ In our example, we used the increment sequence: N/2, N/4, 
…, 1 = 2, 1  (for N = 4 elements)
➭ This is Shell’s original increment sequence

✦ Shellsort: Pick an increment sequence ht > ht-1 > … > h1
➭ Start with k = t
➭ Insertion sort all subsequences of elements that are hk

apart so that A[i] ≤≤≤≤ A[i+hk] for all i (known as an hk-sort)
➭ Go to next smaller increment hk-1 and repeat until k = 1 

(note: h1 = 1)

16R. Rao, CSE 326

Shellsort: An Example (a pathetic one)

✦ Example: Shell’s original sequence: ht = N/2 and hk = hk+1/2
➭ Sort 21, 33, 7, 25  
➭ Try it! (What is the increment sequence?)



17R. Rao, CSE 326

Shellsort: An Example

✦ Example: Shell’s original sequence: ht = N/2 and hk = hk+1/2
➭ Sort 21, 33, 7, 25 (N = 4, increment sequence = 2, 1)
➭ 7, 25, 21, 33 (after 2-sort)
➭ 7, 21, 25, 33     (after 1-sort)

18R. Rao, CSE 326

Shellsort: The Nuts and Bolts

/* Shell sort pseudocode for integers
*  A is an array containing N integers */

int i, j, Increment, Tmp;
for( Increment = N/2; Increment > 0; Increment /= 2 )
for( i = Increment; i < N; i++ ) {

Tmp = A[ i ];

for( j = i; j >= Increment &&
A[ j - Increment ] > Tmp ; j -= Increment )

A[ j ] = A[ j - Increment ];                        

A[ j ] = Tmp;                
}        

✦ Note: The two inner for loops correspond almost exactly to 
the code for Insertion sort!

✦ Running time = ? (What is the worst case?)



19R. Rao, CSE 326

Shellsort: Run Time Analysis

✦ Simple to code but hard to analyze
➭ Run time depends on increment sequence

✦ What about the increment sequence hk = N/2, N/4, …, 2, 1?
➭ Upper bound 
➧ Shellsort does hk insertion sorts with N/hk elements for 

k = 1 to t
➧ Running time = O(Σk=1…t hk (N/hk)

2) 
= O(N2 Σk=1…t 1/hk) = O(N2)

➭ Lower bound
➧ What is the worst case?

20R. Rao, CSE 326

Shellsort: Run Time Analysis

✦ What about the increment sequence N/2, N/4, …, 2, 1?
➭ Lower bound
➧ What is the worst case?
➧ Suppose smallest elements in odd positions, largest in 

even positions in sorted order:
2, 11, 4,  12, 6, 13, 8, 14

➧ None of the passes N/2, N/4, …, 2 do anything!
➧ Last pass (h1 = 1) must shift N/2 smallest elements to 

first half and N/2 largest elements to second half
➧ 4 shifts 1 slot, 6 shifts 2, 8 shifts 3, … = 1 + 2 + 3 + …

(N/2 terms)  
➧ Run time = At least N2 steps = ΩΩΩΩ(N2)



21R. Rao, CSE 326

Shellsort: Can we do better?

✦ The reason we got ΩΩΩΩ(N2) was because of increment sequence
➭ Adjacent increments have common factors (e.g. 8, 4, 2, 1)
➭We keep comparing same elements over and over again
➭ Need to increment so that different elements are compared 

in different passes

✦ Is there a better increment sequence than N/2, N/4, …, 2, 1?

22R. Rao, CSE 326

Shellsort: How to Break the O(N2) Barrier

✦ Hibbard’s increment sequence: 2k – 1, 2k-1 – 1, …, 7, 3, 1
➭ Adjacent increments have no common factors
➭Worst case running time of Shellsort with Hibbard’s 

increments = ΘΘΘΘ(N1.5) (Theorem 7.4 in text)
➭ Average case running time for Hibbard’s = O(N1.25) in 

simulations but nobody has been able to prove it! (next 
homework assignment?)

✦ Final thoughts on the “Simple Sorts” discussed today:
➭ Insertion sort good for small input sizes (~20)
➭ Shellsort better for moderately large inputs (~10,000)



23R. Rao, CSE 326

After Midterm: The crème de la crème of Sorts:

Heapsort, Mergesort, and Quicksort

Next Class: Midterm Review

To Do:

Midterm on Wed Feb 12: Read Chapters 1 through 6

HW #3 due: Thu Feb 13


