
1R. Rao, CSE 326

CSE 326 Lecture 13: Much ado about Hashing

✦ Today’s munchies to munch on:
➭ Review of Hashing
➭ Collision Resolution by:
➧ Separate Chaining
➧ Open Addressing

$ Linear/Quadratic Probing
$ Double Hashing

➧ Rehashing
➧ Extendible Hashing

✦ Covered in Chapter 5 in the text

2R. Rao, CSE 326

Review of Hashing: Integer Keys

✦ Idea: Store data record with its key in array slot:
A[Hash(key)] where Hash is a hashing function.

✦ Integer Keys:
➭ Hash(key) = key mod TableSize
➭ TableSize is size of the array (preferably a prime number)

3R. Rao, CSE 326

Review of Hashing: String Keys

✦ Idea: Store data record with its key in array slot:
A[Hash(key)] where Hash is a hashing function.

✦ String Keys: Treat characters as digits (e.g. use ASCII value)
➭ Hash(key) = StringInt(key) mod TableSize
➭ Examples:
➧ StringInt(“abc”) = 1*272 + 2*271 + 3 = 786
➧ StringInt(“bca”) = 2*272 + 3*271 + 1 = 1540
➧ StringInt(“cab”) = 3*272 + 1*271 + 2 = 2216

4R. Rao, CSE 326

Collisions

✦ What if two different keys hash to the same value?
➭ E.g. TableSize = 17.
➭ Keys 18 and 35 hash to same value:

18 mod 17 = 1 and 35 mod 17 = 1

✦ Cannot store both data records in the same slot in array!

✦ This is called a “collision”
➭ How can we resolve collisions during hashing?

5R. Rao, CSE 326

Collision Resolution

✦ Two different methods:
➭ Separate Chaining: Use data structure (such as a linked

list) to store multiple items that hash to the same slot
➭ Open addressing (or probing): search for other slots

using a second function and store item in first empty slot
that is found

6R. Rao, CSE 326

Collision Resolution

✦ Two different methods:
➭ Separate Chaining: Use data structure (such as a linked

list) to store multiple items that hash to the same slot
➭ Open addressing (or probing): search for other slots

using a second function and store item in first empty slot
that is found

Chaining and
probing???

Get me outta here!!

7R. Rao, CSE 326

Separate Chaining

✦ Each hash table cell holds a pointer to a
linked list of records with same hash
value (i, j, k in figure)

✦ Collision: Insert item into linked list

✦ To Find an item: compute hash value,
then do Find on linked list

✦ Can use List ADT for
Find/Insert/Delete in linked list

✦ Can also use BSTs: O(log N) time
instead of O(N). But lists are usually
small – not worth the overhead of BSTs

8R. Rao, CSE 326

Load Factor of a Hash Table

✦ Let N = number of items to be stored

✦ Load factor λλλλ = N/TableSize

✦ Suppose TableSize = 2 and number of items N = 10
➭ λ = 5

✦ Suppose TableSize = 10 and number of items N = 2
➭ λ = 0.2

✦ Average length of chained list = λ

✦ Average time for accessing an item = O(1) + O(λ)
➭Want λ to be close to 1 (i.e. TableSize ≈ N)
➭ But chaining continues to work for λ > 1

9R. Rao, CSE 326

Collision Resolution by Open Addressing

✦ Linked lists can take up a lot of space…

✦ Open addressing (or probing): When collision occurs, try
alternative cells in the array until an empty cell is found

✦ Given an item X, try cells h0(X), h1(X), h2(X), …, hi(X)

✦ hi(X) = (Hash(X) + F(i)) mod TableSize
➭ Define F(0) = 0

✦ F is the collision resolution function. Three possibilities:
➭ Linear: F(i) = i
➭ Quadratic: F(i) = i2

➭ Double Hashing: F(i) = i����Hash2(X)

10R. Rao, CSE 326

Open Addressing I: Linear Probing

✦ Main Idea: When collision occurs, scan down the array one
cell at a time looking for an empty cell
➭ hi(X) = (Hash(X) + i) mod TableSize (i = 0, 1, 2, …)
➭ Compute hash value and increment until free cell is found

✦ In-Class Example: Insert {18, 19, 20, 29, 30, 31} into
empty hash table with TableSize = 10 using:
(a) separate chaining
(b) linear probing

11R. Rao, CSE 326

Load Factor Analysis of Linear Probing

✦ Recall: Load factor λλλλ = N/TableSize

✦ Fraction of empty cells = 1 - λ

✦ Number of such cells we expect to probe = 1/(1- λ)

✦ Can show that expected number of probes for:
➭ Successful searches = O(1+1/(1- λ))
➭ Insertions and unsuccessful searches = O(1+1/(1- λ)2)

✦ Keep λ ≤ 0.5 to keep number of probes small
(between 1 and 5). (E.g. What happens when λ = 0.99)

12R. Rao, CSE 326

Drawbacks of Linear Probing

✦ Works until array is full, but as number of items N approaches
TableSize (λ ≈ 1), access time approaches O(N)

✦ Very prone to cluster formation (as in our example)
➭ If key hashes into a cluster, finding free cell involves

going through the entire cluster
➭ Inserting this key at the end of cluster causes the cluster to

grow: future Inserts will be even more time consuming!
➭ This type of clustering is called Primary Clustering

✦ Can have cases where table is empty except for a few clusters
➭ Does not satisfy good hash function criterion of

distributing keys uniformly

13R. Rao, CSE 326

Open Addressing II: Quadratic Probing

✦ Main Idea: Spread out the search for an empty slot –
Increment by i2 instead of i

✦ hi(X) = (Hash(X) + i2) mod TableSize (i = 0, 1, 2, …)
➭ No primary clustering but secondary clustering possible

✦ Example 1: Insert {18, 19, 20, 29, 30, 31} into empty hash
table with TableSize = 10

✦ Example 2: Insert {1, 2, 5, 10, 17} with TableSize = 16
➭ Note: 25 mod 16 = 9, 36 mod 16 = 4, 49 mod 16 = 1, etc.

✦ Theorem: If TableSize is prime and λ < 0.5, quadratic
probing will always find an empty slot

14R. Rao, CSE 326

Open Addressing III: Double Hashing

✦ Idea: Spread out the search for an empty slot by using a
second hash function
➭ No primary or secondary clustering

✦ hi(X) = (Hash(X) + i����Hash2(X)) mod TableSize
for i = 0, 1, 2, …

✦ E.g. Hash2(X) = R – (X mod R)
➭ R is a prime smaller than TableSize

✦ Try this example: Insert {18, 19, 20, 29, 30, 31} into empty
hash table with TableSize = 10 and R = 7

✦ No clustering but slower than quadratic probing due to Hash2

15R. Rao, CSE 326

The need to be lazy…

✦ Need to use lazy deletion if we use probing
(why?)
➭ Think about how Find(X) would work…

✦ Mark array slots as “Active/Not Active”

✦ If table gets too full (λ ≈ 1) or if many deletions
have occurred:
➭ Running time for Find etc. gets too long, and
➭ Inserts may fail!
➭What do we do?

Data
Struct-

ures

16R. Rao, CSE 326

Rehashing

✦ Rehashing – Allocate a larger hash table (of size
2*TableSize) whenever λ exceeds a particular value

✦ How does it work?
➭ Cannot just copy data from old table: Bigger table has a

new hash function
➭ Go through old hash table, ignoring items marked deleted
➭ Recompute hash value for each non-deleted key and put

the item in new position in new table

✦ Running time = O(N) but happens very infrequently

17R. Rao, CSE 326

Extendible Hashing

✦ What if we have large amounts of data that can only be stored
on disks and we want to find data in 1-2 disk accesses

✦ Could use B-trees but deciding which of many branches to go
to takes time

✦ Extendible Hashing: Store item according to its bit pattern
➭ Hash(X) = first dL bits of X
➭ Each leaf contains ≤ M data items with dL identical

leading bits
➭ Root contains pointers to sorted data items in the leaves

18R. Rao, CSE 326

Extendible Hashing: The details

✦ Extendible Hashing: Store data
according to bit patterns
➭ Root is known as the directory
➭M is the size of a disk block 00 01 10 11

0000
0010
0011

0101
0110

1000
1001
1010

1110

Directory

Disk Blocks
(M = 3)

Hash(X) = first 2 bits of X

19R. Rao, CSE 326

Extendible Hashing: More details

✦ Extendible Hashing:
➭ Insert: If leaf is full, split leaf

and increase directory bits by
one (e.g. 000, 001, 010, etc.)

➭ To avoid collisions and too
much splitting, would like bits
to be nearly random
➧ Hash keys to long integers

and then look at leading bits

00 01 10 11

0000
0010
0011

0101
0110

1000
1001
1010

1110

Directory

Disk Blocks
(M = 3)

Hash(X) = first 2 bits of X

20R. Rao, CSE 326

Applications of Hashing

✦ In Compilers: Used to keep track declared variables in source
code – this hash table is known as the “Symbol Table.”

✦ In storing information associated with strings
➭ Example: Counting word frequencies in a text! (as in HW 3)

✦ In Game playing programs: Store the move for each position
by hashing that position into a hash table
➭ Called the Transposition table

✦ In on-line spell checkers like this ome
➭ Entire dictionary stored in a hash table
➭ Each word in text hashed – if not found, word is misspelled.

21R. Rao, CSE 326

To Do:

Finish reading Chapter 5

Assignment # 3 (due Thu Feb 13)

Midterm on Wed Feb 12!

Next Class:
All sorts of Sorts

