
CSE 326: Data Structures
Topic #7: Don’t Sweat It - Splay It

Luke McDowell
Summer Quarter 2003

AVL Trees: Are They Worth It?

Advantages
• Rotations are cool!

Disadvantages
• Wouldn’t want to meet one

in a dark alley at night

Splay What?

• Blind adjusting version of AVL trees
– Why worry about balances? Just rotate anyway!

• Amortized time for all operations is O(log n)
• Worst case time is O(n)

– But guaranteed to happen rarely

• Insert/Find always rotates node to the root!

Analogy: AVL is to Splay trees as… .

Idea…
17

10

92

5

You’re forced to make
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!

Idea…
17

10

92

5

3

You’re forced to make
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!

Details… 1. Find or insert a node n
2. Splay n to the root using:

zig-zag, zig-zig, or plain ol’ zig
3. Helps the new root (n) and many others!

Zig-Zag*

g

X
p

Y

n

Z

W

*Just like an…

n

Y

g

W

p

ZX

Which nodes improve depth?

Zig-Zig*
n

Z

Y

p

X

g

W

g

W

X

p

Y

n

Z

*Is this an AVL zig-zig? How to implement?

Why does this help?

Special Case: Zig
p

X

n

Y

Z

root

n

Z

p

Y

X

root

Relative depth of p, Y, Z? Relative depth of everyone else?

Why not drop zig-zig and just zig all the way?

Final result from splaying to root:

Splaying Example

2

1

3

4

5

6

Find(6)

2

1

3

6

5

4

?

Still Splaying 6

2

1

3

6

5

4

1

6

3

2 5

4

?

Almost There, Stay on Target
1

6

3

2 5

4

6

1

3

2 5

4

?

Splay Again

Find(4)

6

1

3

2 5

4

6

1

4

3 5

2

?

Example Splayed Out
6

1

4

3 5

2

61

4

3 5

2

?

Why Splaying Helps

• If a node n on the access path is at depth d before
the splay, it’s at about depth d/2 after the splay
– Exceptions are the root, the child of the root (and

descendants), and the node splayed

• Overall, nodes which are below nodes on the
access path tend to move closer to the root

• Splaying gets amortized O(log n) performance.

Splay Operations: Find

• Find the node in normal BST manner
• Splay the node to the root

Splay Operations: Insert

• Insert the node in normal BST manner
• Splay the node to the root

Splay Operations: Remove

find(x)

L R

x

L R

> x< x

delete x

Now what?

Join

• Join(L, R): given two trees such that L < R, merge them

• Splay on the maximum element in L then attach R

L R R

splay L

Does this work to join any two trees?

Delete Example

91

6

4 7

2

Delete(4)

find(4)

9

6

7

1

4

2

1

2

9

6

7

Find max

2

1

9

6

7

2

1

9

6

7

Nifty Splay Operation: Splitting

• Split(T, x) creates two BSTs L and R:
– all elements of T are in either L or R (T = L ? R)
– all elements in L are ? x
– all elements in R are ? x
– L and R share no elements (L ? R = ?)

How do we split a splay tree?

Splitting Splays
split(x)

T L R

splay

OR

L R L R

? x ? x> x < x

void split(Node * root, Node *& left,
Node *& right, Object x) {

Node * target = root ->find(x);
splay(target);
if (target < x) {

left = target ->left;
target->left = NULL;
right = target;

}
...

}

Pssstt: Another Way to Insert

split(x)

L R

x

L R

> x< x

void insert(Node *& root, Object x) {
Node * left, * right;
split(root, left, right, x);
root = new Node(x, left, right);

}
Interesting note: split-and-insert was

the original algorithm. But insert-
and-splay has better constants

Splay Tree Summary
• All operations are in amortized O(log n) time
• Splaying can be done top-down; better because:

– only one pass
– no recursion or parent pointers necessary

• Splay trees are very effective search trees
– Relatively simple
– No extra fields required
– Excellent locality properties: frequently accessed keys

are cheap to find

Coming Up
• Really big search trees
• Hashing
• More on HW #3’s mysterious benefactor…

To Do
• Finish Chapter 4, start Chapter 5
• Continue HW 3 – part B due Tuesday, 11 p.m.

