
1

CSE 326: Data Structures
Topic 15: Random Random Algorithms

Luke McDowell
Summer Quarter 2003

Play at Home with Prim/Kruskal
A

C

B

D

F
H

G

E

1

7
6

5

11

4

12

13

2
3

9

10

4

2. Now find the MST using Kruskal’s method.
3. Under what conditions will these methods give the same result?
4. What data structures should be used for Kruskal’s? Running time?

Outline

• Review of probability
• Motivation for randomization
• Two randomized data structures

– Treaps
– Randomized Skip Lists

• One randomized algorithm
– Primality checking

The Problem with
Deterministic Data Structures

We’ve seen many data structures with good average case
performance on random inputs, but bad behavior on
particular inputs

We define the average case runtime over all possible
inputs I of size n as:

Average-case T(n) = (S T(I)) / numPossInputs
I

We define the worst case runtime over all possible
inputs I of size n as:

Worst-case T(n) = max T(I)
I

The Motivation for Randomization

Instead of randomizing the input (since we
cannot!), consider randomizing the data
structure
– No bad inputs, just unlucky random numbers
– Expected case good behavior on any input

Worst-case expected time
Definition:

– A worst-case expected time analysis is a weighted sum of all
possible outcomes over some probability distribution

Thus, for some particular input I, we expect the runtime to be
Expected T(I) = S(Pr(S) * T(I, S))

S

* Randomized data structure = = a data
structure whose behaviour is dependant

on a sequence of random numbers

And the worst-case expected runtime of a randomized data
structure* is:

Expected T(n) = max (S(Pr(S) * T(I, S)))
I S

2

What’s the Difference?
• Randomized with good expected time

– Once in a while you will have an expensive operation, but
no inputs can make this happen all the time

• Deterministic with good average time
– If your application happens to always use the “bad” case,

you are in big trouble!

• Expected time is kind of
like an insurance policy
for your algorithm!

Comparing different Analyses

Best-case = Average-Case = Amortized = Worst-case

“Worst-case expected time?”

This topic: “Worst-case expected time” = “Expected time”

Treap Data Structure for the
Dictionary ADT

Treaps:
– Have the binary tree

structure property
– Have the BST order

property
– Have the heap order

property with
randomly assigned
priorities

15
12

10
30

9
15

7
8

4
18

6
7

2
9

heap in yellow; search tree in blue

priority
key

Legend:

Treap Insert
• Choose a random priority
• Insert as in normal BST
• Rotate up until heap order is restored (maintaining BST

property while rotating)

insert(15)

6
7

7
8

2
9

14
12

9
15

Runtime?

Tree + Heap… Why Bother?
Insert data in sorted order into a treap; what

shape tree comes out?

6
7

insert(7)

6
7

insert(8)

7
8

6
7

insert(9)

7
8

2
9

6
7

insert(12)

7
8

2
9

15
12

priority
key

Legend:

Treap Delete?

3

Treap Summary
Implements Dictionary ADT

– Insert in expected O(log n) time
– Delete in expected O(log n) time
– Find in expected O(log n) time
– But worst case O(n)

Memory use
– O(1) per node
– About the cost of AVL trees

Very simple to implement, little overhead
– Less than AVL trees

Perfect Binary Skip List

• Sorted linked list
• # of links of a node is its height
• The height i link of each node (that has one) links

to the next node of height i or greater
• There are 1/2 as many height i+1 nodes as height i

nodes

8

2

11

10

1913 20

22

2923

Find() in a Perfect Binary Skip List

• Start i at the maximum height
• Until the node is found, or i =1 and the next

node is too large:
– If the next node along the i link is less than the

target, traverse to the next node
– Otherwise, decrease i by one

Runtime?

Insert() in a Perfect Binary Skip List

Randomized Skip List Intuition

• It’s far too hard to insert into a perfect skip list

• But is perfection necessary?

• What matters in a skip list?

Randomized Skip List
• Sorted linked list
• # of links of a node is its height
• The height i link of each node (that has one) links

to the next node of height i or greater
• There should be about 1/2 as many height i+1

nodes as height i nodes

2 19 23

8

13

292010

22

11

4

Find() in a RSL?

Runtime?

Insert() in a RSL

• Flip a coin until it comes up heads
– This will take i flips. Make the new node’s height i.

• Do a find, remembering nodes where we moved
down one link

• Add the new node at the spot where the find ends
• Point all the nodes where we moved down (up to

the new node’s height) at the new node
• Point the new node’s links where those redirected

pointers were pointing

RSL Insert Example

2 19 23

8

13

292010 11

insert(22)
with 3 flips

2 19 23

8

13

292010

22

11

Runtime?

Randomized Skip List
Summary

• Implements Dictionary ADT
– Insert in expected O(log n)
– Find in expected O(log n)
– But worst case O(n)

• Memory use
– O(1) memory per node
– About double a linked list

• About as efficient as balanced search trees
(even better for some operations)
But much easier to implement!

Primality Checking

• Given a number P, can we determine whether or not P
is prime?

Date: Wed, 7 Aug 2002 11:00:43 -0700 (PDT)
Newsgroups: uw-cs.ugrads.openforum
Subject: Primes in P??

So, a paper published yesterday alleges they have found
a deterministic polynomial algorithm to determine
primality.

http://www.cse. iitk.ac.in/primality.pdf

Two Properties of Primes

If P is a prime 0 < A < P and 0 < X < P

Then:
1. AP-1 = 1 (mod P)
2. The only solutions to X2 = 1 (mod P)

are: X = 1 and X = P - 1

5

Checking Primality
Systematic algorithm:

For all A such that 0 < A < P
Calculate AP-1 mod P using pow()
Check at each step of pow() and at end for two primality conditions

Problem?

Randomized algorithm:
Randomly pick an A and calculate AP-1 mod P using pow().
Check primality conditions.

Problem?

Solution?

Evaluating Randomized Primality Testing

Your probability of being struck by lightning this year:
0.00004%

Your probability that a number that tests prime 11 times in
a row is actually not prime: 0.00003%

Your probability of winning a lottery of 1 million people
five times in a row: 1 in 2100

Your probability that a number that tests prime 50 times in
a row is actually not prime: 1 in 2100

Other Real-World Applications
• Routing finding – computer networks, airline

route planning
• VLSI layout – cell layout and channel routing
• Production planning – “just in time” optimization
• Protein sequence alignment
• Traveling Salesman
• Many other “NP-Hard” problems

– A class of problems for which no exact polynomial
time algorithms are known – so heuristic search is the
best we can hope for

