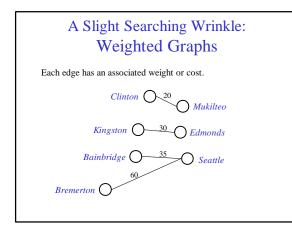
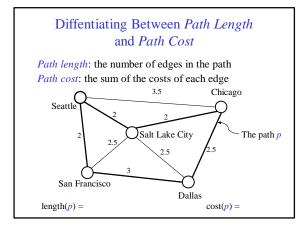


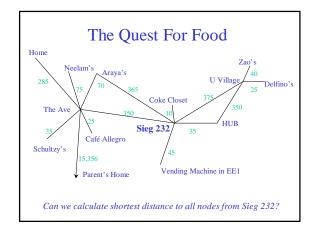
Luke McDowell Summer Quarter 2003

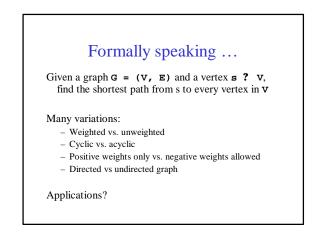
Finding the Shortest Path

- Use Breadth-First-Search
- Runtime?









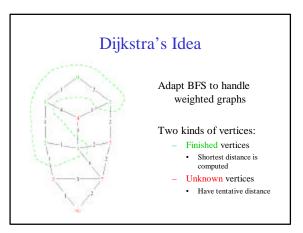
Dijkstra, Edsger Wybe

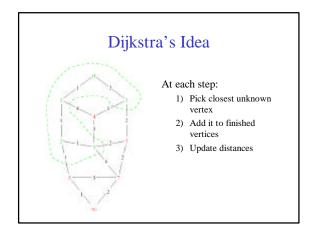
Legendary figure in computer science; was a professor at University of Texas.

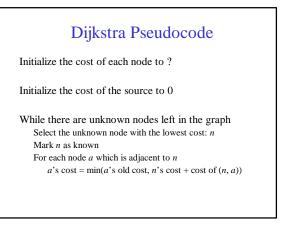
Supported teaching introductory computer courses without computers (pencil and paper programming)

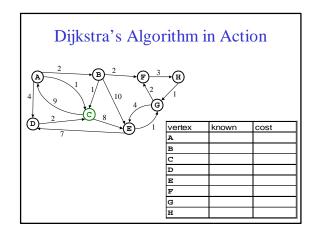
Supposedly wouldn't (until very late in life) read his e-mail; so, his staff had to print out messages and put them in his box.

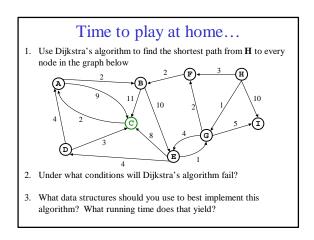
E.W. Dijkstra (1930-2002)











Dijkstra Implementation?

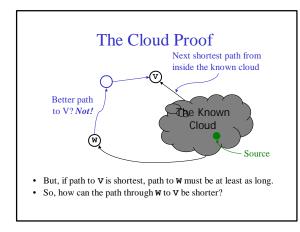
Initialize the cost of each node to ? Initialize the cost of the source to 0 While there are unknown nodes left in the graph Select the unknown node with the lowest cost: nMark n as known For each node a which is adjacent to na's cost = min(a's old cost, n's cost + cost of (n, a))

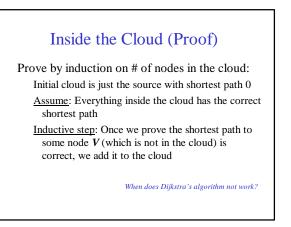
What data structures?

Running time?

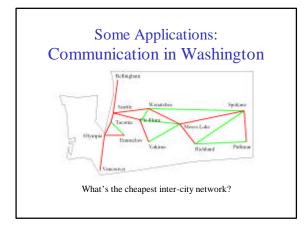
Dijkstra's Algorithm for Single Source, Shortest Path

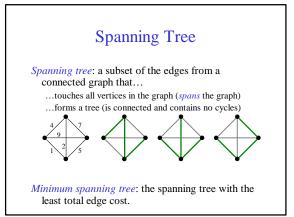
- Classic algorithm for solving shortest path in weighted graphs without negative weights
- A *greedy* algorithm (irrevocably makes decisions without considering future consequences)
- Intuition:
 - shortest path from source vertex to itself is 0
 - cost of going to adjacent nodes is at most edge weights
 - cheapest of these must be shortest path to that node
 - update paths for new node and continue picking cheapest path

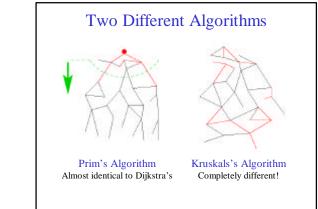










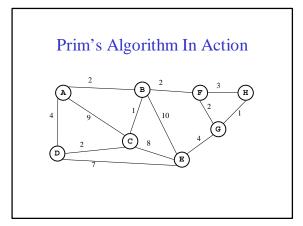


Prim's Algorithm for

Minimum Spanning Trees A node-oriented greedy algorithm (builds an MST by greedily adding nodes)

Select a node to be the "root" and mark it as known While there are unknown nodes left in the graph

Select the unknown node *n* with the smallest cost from some known node *m* Mark *n* as known Add (*m*, *n*) to our MST Update cost of all nodes adjacent to *n Runtime: Proof:*

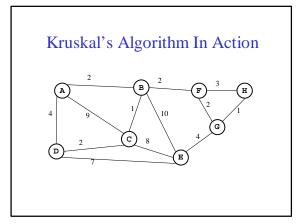


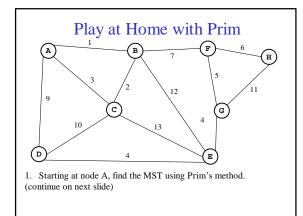
Initialize all vertices to unconnected

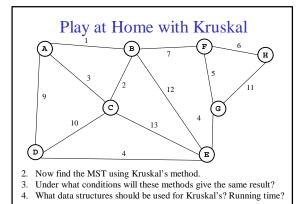
While there are still unmarked edges

Pick the lowest cost edge e = (u, v) and mark it

If **u** and **v** are not already connected, add **e** to the minimum spanning tree and connect **u** and **v** Sound familiar?







Proof of Correctness

We already showed this finds a spanning tree: That was part of our definition of a good maze.

Proof by contradiction that Kruskal's finds the minimum: Assume another spanning tree has *lower cost* than Kruskal's Pick an edge $\mathbf{e_1} = (\mathbf{u}, \mathbf{v})$ in that tree that's *not* in Kruskal's Kruskal's tree connects \mathbf{u} 's and \mathbf{v} 's sets with another edge $\mathbf{e_2}$ But, $\mathbf{e_2}$ must have at most the same cost as $\mathbf{e_1}$! So, swap $\mathbf{e_2}$ for $\mathbf{e_1}$ (at worst keeping the cost the same) Repeat until the tree is identical to Kruskal's: **contradiction**!

QED: Kruskal's algorithm finds a minimum spanning tree.

Initialize all vertices to unconnected While there are still unmarked edges Pick the lowest cost edge **e** = (**u**, **v**) and mark it

If \mathbf{u} and \mathbf{v} are not already connected, add \mathbf{e} to the minimum spanning tree and connect \mathbf{u} and \mathbf{v} What data structures?

Running time?