CSE 326: Data Structures
Topic 11: Sorting by Comparison

Luke McDowell
Summer Quarter 2003

Comparison-based sorting algorithms

» Simple: Selection Sort
— (Insertion Sort, Bubble Sort, Shell Sort)
» Good worst case: HeapSort, AVL Sort, MergeSort
e Quick: QuickSort
* Imaginary: StrawSort (aka, LukeSort)
¢ Can we do better?

Selection Sort idea

Find the smallest element, put it first

¢ Find the next smallest element, put it
second

¢ Find the next smallest, put it next
o ¢tc.

Selection Sort

void SelectionSort (Array a[1..n]) {
for (i=0, i<n; ++i) {
j = Find index of smallest entry in Array.
Swap(ali],a[j])
}

while (other people are coding QuickSort/MergeSort)
{

}

Running time? Wordt, Avg, Best N2

Twi ddl e t hunbs

HeapSort: sorting with a priority
gqueue ADT (heap)

87
23 44 756
13 18

801 5,

%Ba 13 18 23 27

Shove everything into a queue, take them out
smallest to largest.

P
Running time? Worst, avg N logN

AVL Sort?

1. Insertintotree (N * logN)
2. In-order traversa [O(n)]

Running time?

Worst, bestNIogN

MergeSort MergeSort (aray [1..n])
Split Array in hal f
Recursively sort each half
Merge two hal ves toget her

Mer ge (ai[1..n],a2[1..n])
i1=1, i2=1
Wile (il<n, i2<n) {
if (al[i1] < a2[i2]) {
Next is al[il]
i 1++
} else {
Next is a2[i2]
i2++

}

Now throw in the dregs...

MergeSort Running Time

T(n) = 2T(N/2) +N

T(N) = O(N logN)
(best, worst)
Discussin section

o) (20

Pick a“ pivot”. Divideinto lessthan & greater-than pivot.
Sort each side recursively.

QuickSort Example
2 (s [3 [5 [0 [6 |

Must swap pivot at end!

QuickSort
Worst case

T(n) =N + T(n-1)

T(n) = O(N?)

Dealing with Slow QuickSorts

¢ Randomly permute input
— Bad cases more common than simple probability would
suggest. So, make it truly random.
« Pick pivot cleverly
— “Median-of-3" rule takes Median(first, middle, last)
element.
— Average running time:

¢ Choose pivot point randomly!

[With good choice, fastest in practice!! J

QuickSelect

» What if we want to find the kth
smallest element in an array?

» What if k = N/2 (i.e., we want to find
the median)?

QuickSelect (Array A, int k)

pckpivot: [Z]2 [8 [3 [5 [9 [6]

1 2 3 4 5 6 7

Partition array: |5 ‘2 ‘6 ‘3 .9 ‘8 |

pindex
Return pivot!

¢ k== pindex?
¢ k < pindex?

* k> pindex?

[QuickSelect(right, k-pindex-1)

)

Running time?

O(n) — one recursive call!

StrawSort (aka, LukeSort)

e

Can we do any better?

Worst case time Lower Bound

« How many comparisons does it take before
we can be sure of the order?

¢ Thisisthe minimum # of comparisons that
any algorithm could do.

Lower Bound — new analysis for us!!
True of any algorithm

Decison treeto sort list A,B,C

Internal node, with facts known so far

Legend Leaf node, with ordering of A,B,C

c<a Edge, with result of one comparison

Any alg will have same leaves,

Leaves are final states.
in different places

Max depth of the decision tree

1. Max # leaves for binary tree of height h?

Cel[logL]

3. A decision tree to sort N elements must have N!

leaves.

Therefore:

* Any sorting algorithm that uses only comparisons
between elements requires at least log(N!)
comparisons in the worst case! O(N logN

* This plus some algebra yields bound:

2. Shallowest tree with L leaves?

