
1

CSE 326: Data Structures
Topic 11: Sorting by Comparison

Luke McDowell
Summer Quarter 2003

Comparison-based sorting algorithms

• Simple: Selection Sort
– (Insertion Sort, Bubble Sort, Shell Sort)

• Good worst case: HeapSort, AVLSort, MergeSort
• Quick: QuickSort
• Imaginary: StrawSort (aka, LukeSort)
• Can we do better?

Selection Sort idea

• Find the smallest element, put it first
• Find the next smallest element, put it

second
• Find the next smallest, put it next
• etc.

Selection Sort
void SelectionSort (Array a[1.. n]) {

for (i=0, i< n; ++i) {
j = Find index of smallest entry in Array.
Swap(a[i],a[j])

}

while (other people are coding QuickSort/MergeSort)
{

Twiddle thumbs
}

}

Running time? Worst, Avg, Best N2

HeapSort: sorting with a priority
queue ADT (heap)

756

27
18

801

35

13
23 44

87

8 13 18 23 27

Shove everything into a queue, take them out
smallest to largest.

Worst, avg N logN
Running time?

AVL Sort?

Running time?
Worst, bestNlogN

1. Insert into tree (N * logN)
2. In-order traversal [O(n)]

2

MergeSort MergeSort (Array [1.. n])
Split Array in half
Recursively sort each half
Merge two halves together

Merge (a1[1..n],a2[1..n])
i1=1, i2=1
While (i1<n, i2<n) {

if (a1[i1] < a2[i2]) {
Next is a1[i1]
i1++

} else {
Next is a2[i2]
i2++

}
}
Now throw in the dregs…

MergeSort Running Time
T(n) = 2 T(N/2) + N

…
T(N) = O(N logN)

(best, worst)
Discuss in section

QuickSort

28

15 47? ?

? ?

? ?

Pick a “pivot”. Divide into less-than & greater-than pivot.
Sort each side recursively.

Picture from PhotoDisc.com

QuickSort Example
6953827

Must swap pivot at end!

QuickSort
Worst case

T(n) = N + T(n-1)
…

T(n) = O(N2)

Dealing with Slow QuickSorts

• Randomly permute input
– Bad cases more common than simple probability would

suggest. So, make it truly random.

• Pick pivot cleverly
– “Median-of-3” rule takes Median(first, middle, last)

element.
– Average running time:

• Choose pivot point randomly!
N log N

With good choice, fastest in practice!!

3

QuickSelect

•What if we want to find the kth

smallest element in an array?

•What if k = N/2 (i.e., we want to find
the median)?

QuickSelect (Array A, int k)
6953827Pick pivot:

Partition array:

• k == pindex?

• k < pindex?

• k > pindex?

897362 75

1 2 3 4 5 6 7

1 2 3 4 5 6 7

pindex

Return pivot!

QuickSelect(left, k)

QuickSelect(right, k-pindex-1)

Running time? O(n) – one recursive call!

StrawSort (aka, LukeSort)

Can we do any better?

“StrawMan”

Worst case time Lower Bound

• How many comparisons does it take before
we can be sure of the order?

• This is the minimum # of comparisons that
any algorithm could do.

Lower Bound – new analysis for us!!
True of any algorithm

Decision tree to sort list A,B,C

A<B

B<C

A<C

C<A

C<B

B<A

A<C

C<A

B<C

C
<B

A<B B<A

A<B
C<B

A,B,C.

A,C,B. C,A,B.

B,A,C. B<A
C<A

B,C,A. C,B,A

Legend
facts Internal node, with facts known so far

A,B,C Leaf node, with ordering of A,B,C
C<A Edge, with result of one comparison

Leaves are final states.
Any alg will have same leaves,

in different places

Max depth of the decision tree

1. Max # leaves for binary tree of height h?

2. Shallowest tree with L leaves?

3. A decision tree to sort N elements must have N!
leaves.

Therefore:
• Any sorting algorithm that uses only comparisons

between elements requires at least log(N!)
comparisons in the worst case!

• This plus some algebra yields bound:

2h (complete, or induction)

Ceil [log L]

permutations

O(N logN)

