CSE 326: Data Structures
Topic #10
The Dynamic (Equivalence) Du_o:
Union-by-Size & Path Compression

Luke McDowel]
* Summer Quarter 2003

What's a Good Maze?

Maze Construction Algorithm

Given:

A collection of rooms V

Connections between the rooms (initially all closed) E
We want to build a collection of connections to knock down,
E ? E, suchthat one unique path connects every two rooms

Wiile edges remain in E {
(A, B) = RenoveRandomall ()
if(A and B have not been A
connected) {
Add (A, B) to E
Mark A and B as connected B

The Problem, Formally

« “If Aand B have not yet been

connected”
— Aretwo elements in the same set?

« “Mark A and B as connected”

@ — Form the union of two sets

Digoint Sets ADT

= Find(x) A
— Returns set identifier
— Find(x) = Find(y) iff xand y
arein the same set
« Union(A, B)
— Arguments are set identifiers
— How do we union the sets
containing x and y? B
= MakeNewsSet(item)

— Create a new set containing
only item

Digoint Sets Formal Properties

« Equivalence property

— Every element of aDS
belongs to exactly oneset find(4) ;7 {1,4.8} {(j}\
+ Dynamic equivalence 8 /Z} (23,6}
5,9,10}
property union(3,6) —* {213}/
— The set of an element can

change after execution of
aunion

Our Modified Maze Construction Algorithm

Wiile edges remain in E
(A, B) = RenpveRandomall () A
if(Find(A != Find(B))
E? = E?U (A, B)
Union(Find(A), Find(B)) B

Example

<« 3 <« 10 »
Construct the maze on the right IZ:‘ .@

Initially (the name of each set is . . N
underlined): E‘ * E !
(SO H{Hd{eHHa{h{i} ’

[o) = {n} s {i]

Order of edgesin blue

—

« o »

Example, continued
{a{BH{H{dH{eH{H{a{h{i}

s ol
find(b) ? b 3 :
find(e) ? e § °
find(b) ? find(e) so: ” «
add 1to E? IE) T !
8

union(b, €)

11 9
s 5} 0
Result: E‘ 2 >

Order of edgesin blue

DS ADT Tree Representation
A A
@ q ‘ * Maintain aforest
of up-trees
B B T ¢ Eachsetisatree
¢ What'sthe set

q 3/].’\ identifier?

Find Implementation

B | Find(x)

— Walk parents of x to
S i the root

Runtime:

Union Implementation
B

"o

— Since A and B are
aready theroots of a
tree, thisis easy!

A

" (oo
Lo ™00
¢

Runtime:

I
&

[2 [} 10 (]
? 1 6
[d} 4 .@.7 .

9

11 8
union(b,e) [Eﬂ 12 " 5 »E

More of the Example

EOOOOOO6O0

(extra space)

The Final Maze
[al«—{b]

Ooh... scary!
Such a hard maze!

Mini-Exercise

Assume union always keeps first argument as the root
1. Starting with distinct sets a,b,c,d,ef,g

— Union(ac)

— Union(b,d)

— Union(a,e)

— Find(c)

— Union(ef)

— Union(f,a)

— Union(b,c)

— Find(c)
2. Must Find(c) always return the same value?
3. Could Union have done a better job?

(extra space)

Nifty storage trick

A forest of up-trees
can easily be (a) é) é}
stored in an array.

Use hashtable to (b) (d)
map node names
to array indices

1(b) 2(c) 3(d) 4(e) 5(f) 6(a) 7(h) 8(0)
pindec| 4 0| 4] 0] 2] 2]1]1]7

I mplementation

int Find(QObject x) { void Union(int x, int y) {

int xID = hTabl e[x]; uplyl = x;
}
while(up[xID] != -1) {
xID = up[xI D];
}

return xID;

}

Improving Union

Could we do a better

job on thisunion?

5

Union-by-size Code
int Union(int x, int y) {
/1 1f up[x] and up[y] aren't both

/Il -1, this algorithmis in trouble

if (size[x] > size[y]) {

uply] = x;

size[x] += size[y];
} new runtime for Union():
el se {

up[x] =y;

size[y] += size[x];
} new runtime for Find():

}

Union-by-Size Find Analysis

Finds are O(max node depth)

¢ All nodes start at depth O

¢ Depth increases

— Only when part of smaller treein aunion
— Only by one (1) level at atime

— How many times can this happen?

e ?,union runtime =

Improving Find

(03660

Wait - what' sthere to
improve?

Whilewe'refinding e,
could we do anything else?

Path Compression!

find(e)

Exercise

Use union-by-size. Keep the first argument asroot if there’satie.
How many nodes does each Find access?
1. Starting with distinct setsa,b,c,d,e,f,g
— Union(a,c)
— Union(b,d)
Union(a,e)
Union(g,h)
Find(c)
Union(b,h)
Union(e,f)
Union(f,a)
Union(b,c)
Find(c)
Find(h)
~ Find(g)
2. Modify the above to also use Path Compression. Does it help?
3. Using union-by-size, what is the worst case depth of any node? Construct
asequence of union operations that produces this for a depth of 5.

(extra space)

Path Compression Code

int Find(Cbject x) { /1 Change the parent for
/1 x had better be in /1 all nodes along the path
Il the set! while(up[i] '= -1) {
int xID = hTable[X]; tenp = up[i];
int i = x1D; up[i] = xID;
i = tenp;
Il Get the root for }
Il this set return xID;
while(up[xID] !'= -1) { }
xID = up[xID];
}
(New?) runtime for Find():

Interlude: A Really Slow Function

Ackermann created areally big function A(x, y) with
theinverse ?(x, y) which is really small

How fast does ?(x, y) grow?

?(x,y) = 4 for x far larger than the number of
atoms in the universe (2300)

? shows up in:
— Computation Geometry (surface complexity)
— Combinatorics of sequences

Complex Complexity of
Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, m union and
find operations on a set of n elements have worst case
complexity of O(m?(m, n))

For all practical purposes this is amortized constant time:
O(m?) for m operations!

In some practical cases, one or both optimizationsis
unnecessary, because trees do not naturally get very
deep.

Digoint Sets ADT Summary

¢ Also known as Union-Find or Digjoint Set
Union/Find

¢ Simple, efficient implementation
— With union-by-size and path compression
¢ Great asymptotic bounds

¢ Kind of weird at first glance, but lots of
applications

