
CSE 326: Data Structures
and Algorithms

Luke McDowell
Summer Quarter 2003

Today’s Outline

• Administrative Info
• Survey
• Overview of the Course
• What is an algorithm? ADT? Data structure?
• Review: Stacks and queues

Course Information

• Instructor: Luke McDowell, Sieg 226C
lucasm@cs.washington.edu
Office hours: Tuesday 11:00-12:00, Wed 1-2 p.m., or by appt.

• Teaching Assistants:
AA: Aiman Erbad erbad@cs.washington.edu Mon 1-2 p.m.
AB: Steven Martin stevaroo@cs.washington.edu Fri 2-3 p.m.
Office hours in Sieg 226A
Go to any office hours you like.

• Text: Data Structures & Algorithm Analysis in Java, 2nd edition
(Mark Allen Weiss)

or
Data Structures & Algorithm Analysis in C++ (Weiss)

Course Policies
• Written homeworks

– Due at the start of class on due date
– No late homeworks accepted

• Programming homeworks
– Turned in electronically before 11pm on due date
– Once per quarter: use your “late day” for extra 24 hours – Must email TA

• Work in teams only on explicit team projects
– Appropriate discussions encouraged – see website

• Approximate Grading
– Weekly assignments: 35%
– Midterm: 20% Friday July 25, in class
– Final: 30% Friday Aug. 22 in class
– Best of above 3: 10%
– Participation: 5%

Course Mechanics
• 326 Web page: http://www.cs.washington .edu/326
• 326 mailing lists

– announcement list: cse326-announce@cs.washington.edu
– discussion list: cse326@cs.washington.edu
– subscribe to these using web interface, see homepage

• Course laboratories are 232 and 329 Sieg Hall
– labs have NT machines w/X servers to access UNIX

• All programming projects graded on UNIX
– OK to develop using other tools (e.g. under Windows) but make

sure you test under UNIX
– Program in Java, or talk to the instructor

That Survey Thing

• Why are you taking my picture?
• What if I forgot everything?
• What if I know this all already?
• What if I’m the famous one?

What is this Course About?

Clever ways to organize information in order to
enable efficient computation

– What do we mean by clever?

– What do we mean by efficient?

Clever? Efficient?

Lists, Stacks, Queues
Heaps
Binary Search Trees
AVL Trees
Hash Tables
Graphs
Disjoint Sets

Insert

Delete

Find

Merge

Shortest Paths

Union

Data Structures Algorithms

Used Everywhere!
Mastery of this

material separates
you from:

Systems

Theory
Graphics

AI

Applications

•Perhaps the most important course in your CS curriculum!
•Guaranteed non-obsolescence!

E.g. 1: Representing Course
Prerequisites

321143

142

322

326
341370

378

401

421

Nodes = courses
Directed edge = prerequisite

“prerequisite for”

From R. Rao, CSE 326 Winter 2003

E.g. 2: Representing Expressions
in Compilers

x1=q+y*z
x2=y*z-q

Naive:

common
subexpression

eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice

From R. Rao, CSE 326 Winter 2003

E.g. 3: Information Transmission in
a Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140

181
30

16

130

From R. Rao, CSE 326 Winter 2003

E.g. 4: Six Degrees of Separation
from Kevin Bacon

Apollo 13

A
pollo 13

Forest G
um

p The Princ
ess B

ride

The Princess Bride Toy Story

Desperately Seeking Susan

After Hours

Kevin
Bacon

Tom
Hanks

Gary
Sinise

Robin
Wright

Wallace
Shawn

Cary
Elwes

Laurie
Metcalf

Rosanna
Arquette

Cheech
Marin

Based on:
CSE 326, 2000

When do I get
my Oscar?

From R. Rao, CSE 326 Winter 2003

Asymptotic Complexity

Our notion of efficiency:
How the running time of an algorithm scales with the

size of its input
– several ways to further refine:

• worst case
• average case
• amortized over a series of runs

Specific Goals of the Course

• Become familiar with some of the fundamental data
structures in computer science

• Improve ability to solve problems abstractly
– data structures are the building blocks

• Improve ability to analyze your algorithms
– prove correctness
– gauge (and improve) time complexity

• Become modestly skilled with the UNIX operating
system (you’ll need this in upcoming courses)

One Preliminary Hurdle

1. Recall what you learned in CSE 321 …
– proofs by mathematical induction
– proofs by contradiction
– formulas for calculating sums and products of series
– recursion

Know Sec 1.1 –1.3 of text by heart!

A Second Hurdle
2. Unix

Experience 1975 all over again!
– Try to login, edit, and compile your favorite “hello

world” program right away
Get help at the UNIX tutorial tomorrow!

– Programming Assignment 1 due next Monday
– Bring your questions and frustrations to Section on

Thursday!

A Third Hurdle: Java
Public class Set_of_ ints {

Public void insert(int x);
Public void remove(int x); … }

Review the syntax (see chapter 1)
Run your first program (assignment 1)

Java ? Data Structures
One of the all time great books in computer science:
The Art of Computer Programming (1968-1973)

by Donald Knuth

Examples in assembly language (and English)!

American Scientist
says: in top 12 books
of the CENTURY!

Very little about Java in class.
Weiss textbook’s code – don’t get bogged down!

Today’s Outline

• Administrative Info
• Survey
• Overview of the Course
• What is an algorithm? ADT? Data structure?
• Stacks and queues

What is an Algorithm?

• ???

According to …

• According to Mirriam-Webster, an algorithm is …
– a procedure for solving a mathematical problem (as of

finding the greatest common divisor) in a finite number
of steps that frequently involves repetition of an
operation

– (broadly) a step-by-step procedure for solving a
problem or accomplishing some end especially by a
computer

• So …
– What’s the difference between an “algorithm” and a

“program?”

Concepts vs. Mechanisms
• Algorithm

– A sequence of high-level,
language independent
operations, which may act
upon an abstracted view
of data.

• Abstract Data Type
(ADT)
– A mathematical

description of an object
and the set of operations
on the object.

• Program
– A sequence of operations in a specific

programming language, which may
act upon real data in the form of
numbers, images, sound, etc.

• Data structure
– A specific way in which a program’s

data is represented, which reflects the
programmer’s design choices/goals.

ADT’s vs Data Structures
• List ADT

– Stack ADT
– Queue ADT

• Collection ADT
– Stores objects without

duplicates
• Dictionary ADT

– Stores (Key, Value) pairs
– Alternatively: Maps Keys to

Values
• Priority Queue ADT

– Stores objects, and supports
efficient removal of objects
based upon some kind of
ordering

• Graph ADT
• … and even more!

• Linked List
• Circular Array
• Binary Search Tree
• Splay Tree
• Hash Table
• Leftist Heap
• Skew Heap
• Adjacency Matrix

• … and lots more!

So … which ADT’s do these
data structures implement?

Why So Many Data Structures?

Ideal data structure:
“fast”, “elegant”, memory efficient

Generates tensions:
– time vs. space
– performance vs. elegance
– generality vs. simplicity
– one operation’s performance vs. another’s

The study of data structures is the study of
tradeoffs. That’s why we have so many of them!

ADT Presentation Algorithm
• Present an ADT
• Motivate with some applications
• Repeat until it’s time to move on:

– develop a data structure and algorithms for the ADT
– analyze its properties

• efficiency
• correctness
• limitations
• ease of programming

• Contrast strengths and weaknesses

• Queue operations
– create
– destroy
– enqueue
– dequeue
– is_empty

• Queue property: if x is enQed before y is enQed,
then x will be deQed before y is deQed
FIFO: First In First Out

First Example: Queue ADT

F E D C Benqueue dequeueG A

Applications of the Q

• Hold jobs for a printer
• Store packets on network routers
• Make waitlists fair
• Breadth first search

Circular Array Q Data Structure

enqueue(Object x) {
Q[back] = x ;
back = (back + 1) % size
}

b c d e f

Q
0 size - 1

front back

dequeue() {
x = Q[front] ;
front = (front + 1) % size;
return x ; }

How test for empty list?

How to find K-th
element in the queue?

What is complexity of
these operations?

Limitations of this
structure?

Linked List Q Data Structure
b c d e f

front back

void enqueue(Object x) {
if (is_empty())

front = back = new Node(x)
else

back->next = new Node(x)
back = back->next

}

Object dequeue() {
assert(!is_empty)
return_data = front ->data
temp = front
front = front->next
delete temp
return temp->data

}
bool is_empty() {

return front == null
}

Circular Array vs. Linked List Second Example: Stack ADT

• Stack operations
– create
– destroy
– push
– pop
– top
– is_empty

• Stack property: if x is on the stack before y is
pushed, then x will be popped after y is popped
LIFO: Last In First Out

A

B
C
D
E
F

E D C B A

F

Stacks in Practice

• Function call stack
• Removing recursion
• Balancing symbols (parentheses)
• Evaluating Reverse Polish Notation
• Depth first search

Array Stack Data Structure

S
0 size - 1

f e d c b

void push(Object x) {
assert(!is_full())
S[back] = x
back++

}
Object top() {

assert(!is_empty())
return S[back - 1]

}

back

Object pop() {
back--
return S[back]

}
bool is_empty() {

return back == 0
}
bool is_full() {

return back == size
}

Linked List Stack Data Structure

b c d e f

back

void push(Object x) {
temp = back
back = new Node(x)
back->next = temp

}
Object top() {

assert(!is_empty())
return back->data

}

Object pop() {
assert(!is_empty())
return_data = back->data
temp = back
back = back->next
return return_data

}
bool is_empty() {

return back == null
}

Data structures you should
already know

• Arrays
• Linked lists
• Queues
• Stacks

To Do

• Return your survey before leaving!
• Check out the web page
• Come to the Unix tutorial tomorrow (Tuesday), Sieg 232,

12-2 p.m.
• Sign up on the cse326 mailing lists
• Log on to the PCs in rooms 232 or 329 and access an

instructional UNIX server
– If you don’t have a CSE account, sign up today!

• Read 1.1-1.3, Chapters 2 and 3 in the book
– Don’t worry, it gets better!

• HW 1 due this Monday, June 30!

