CSE 326 Summer 2003

Homework 7 solutions

1. 

a) Assume each element is a (key, data) pair, where the array is sorted on key value for efficient lookups.  Therefore each element is 8 bytes + 2 bytes = 10 bytes, and the entire array is 10 * 10,000 =100,000 bytes.

b) Each element of a BST has a key (8 bytes), the data (2 bytes), and a left and right pointer (4 bytes each) for a total of 18 bytes.  With 10,000 (key, data) pairs, the total storage is 180,000 bytes.

c) Each element of the AVL tree has a key (8 bytes), the data (2 bytes), the height at that node (4 bytes), and a left and right pointer (4 bytes each) for a total of 22 bytes.  With 10,000 (key, data) pairs, the total storage is 220,000 bytes.

d) Each element of a Splay tree has a key (8 bytes), the data (2 bytes), and a left and right pointer (4 bytes each) for a total of 18 bytes.  With 10,000 (key, data) pairs, the total storage is 180,000 bytes (same as BST).  We might also have a parent pointer (4 extra bytes per node).

e) With a load factor of 0.75, the table size must be 13,334.  Since we are using separate chaining, each of these will contain a pointer to the beginning of a list (4 bytes).  Each of the 10,000 elements in the hash table will be stored as a list node that contains the key (8 bytes), data (2 bytes), and a pointer to the next element (4 bytes) for a total of 14 bytes.  Total storage is then (13,334 * 4) + (10,000 * 14) = 193,336 bytes.  

f) With a load factor of 0.4, the table size must be 25,000.  Each element of the table will have a key (8 bytes) and data (2 bytes), total 10 bytes. The total storage is then 10 * 25000 = 250,000 bytes.

g) Each leaf node in the B tree will contain 100 elements consisting of data (2 bytes) and keys (8 bytes), total 1000 bytes per leaf node.  Each index node will contain 31 keys (8 bytes) and 32 pointers (4 bytes), total 376 bytes index node.  Assuming a perfect B tree that is completely full, there are going to be 10,000 / 100 = 100 leaves.  This means the tree will be of height log32(100)  =~ 2, which gives 4 internal nodes plus 1 root.  The total storage is therefore (100 leaf nodes * 1000) + (5 index nodes * 376) = 101,880 bytes best case.

2. 

a) True.  If a word hashes to a location with value false, then no word in the reference dictionary hashed to that location.  Therefore, that word cannot exist in the reference dictionary.

b) False.  If a word hashes to a location with value true, then we know that some word in the reference dictionary hashed to that location.  However, since this hash table contains bools or booleans (and not words), we have no way of determining whether the word we hashed is the same word in the reference dictionary which caused that location to be set to true.

c) One of the tricky points about this question is the fact that there is more data given than is strictly necessary.  Since the tableSize is 300,007, the table must contain 300,007 entries—that is, it must contain 300,007 bools or Booleans.  Since each bool or Boolean uses one but, and there are 8 bits to a byte, the table will use 300,007 / 8 = 37,500 bytes, or 37,500 / 1024 = 36.6 KB.

d) As we saw in part (a), the probability that this algorithm mistakes a properly-spelled word as a misspelling is 0.

The likelihood that a misspelled word is not recognized as a misspelling is equal to the likelihood that this misspelled word hashes to an entry which is set to true.  If we assume that our hash function is close to ideal (that is, it spreads keys “evenly” over the hash table), then a word is equally likely to hash to all locations in the table.  Thus, the likelihood that a misspelled word hashes to an entry which is set to true is the number of entries set to true divided by the tableSize.  We can approximate this value by the load factor lambda, although lambda might be an overestimate, since our algorithm does not handle key collisions.  For this particular table, lambda is 30,000 / 300,007 = 9.99%.

3.

a) j would end up at depth 3:

[image: image1.png]



b) j would end up at depth 2:

[image: image2.png]



c) j would end up at depth 1:

[image: image3.png]



4.

9.5)


a.
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b. 
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9.16) Both Prim’s and Kruskal’s work with negative edges.  Although Prim’s is nearly identical to Dijkstra’s algorithm, it works because the algorithm forbids cycles—i.e. it won’t let you add an edge that connects a vertex that is already known.  In Kruskal’s algorithm if an edge is negative the algorithm works the same way—i.e. it will choose the negative edge if it connects an unknown vertex and the cost is the next least.

9.41) Here is the code for a simple topological sort (Weiss, p. 295)

void topsort() throws CycleFound

{


Vertex v, w;


for (int counter = 0; counter < NUM_VERTICES; counter++) 


{



v = findNewVertexOfDegreeZero();



if (v == NULL)




throw new CycleFound;



v.topNum = counter;



for each w adjacent to v




w.indegree--;


}

}

To print out the cycles, we need to do some work instead of just throwing a CycleFound exception.  If no vertex has indegree 0, we can find a cycle by tracing backwards through vertices with positive indegree; since every vertex on the trace back has a positive indegree, we eventually reach a vertex twice, and a cycle has been found.

5.

7.17) The runtime of mergesort is always nlog n regardless of input.  This is because the algorithm does log n merges every time, and each merge touches every element in the two arrays being merged.  Unlike Quicksort, the arrays are always divided evenly.

7.19)
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7.20)  a. O(N logN) because the pivot will partition perfectly.

          b. Same as above.

          c. O(N logN), this is proved in Section 7.7.5 for a randomly chosen pivot; the actual performance is slightly better since the code in the text uses a median-of-three pivot selection and a cutoff.
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