[image: image1.jpg]

Midterm Review
CSE 326, Autumn 2003
10/31/2003

[image: image2.jpg]

Introduction
· Concepts vs. Mechanisms

· Pseudocode vs. Java

· Algorithm vs. Program

· ADT vs. Data Structure

· All Data Structures we have seen can implement all ADTs we have seen.

However, they differ in efficiency.

· Simple ADTs: List, Stack, Queue

Usually implemented using arrays or linked list,
either sorted or unsorted.

Algorithm Analysis

· Asymptotic complexity: Describes how running time scales as
 input size increases.

· Two orthogonal axes:

1. worst-case, best-case, average-case, amortized

2. upper bound (O or o), lower bound (Ω or (), tight bound (Θ)

· Common names: constant, linear, log-linear, quadratic, exponential, etc.

· Big-Oh notation: quick and dirty analysis, very useful in practice but doesn’t
 capture everything

· Proofs of correctness or complexity bounds

1. By induction

2. By contradiction

3. By counterexample
4. By expansion (for recursive equations)

Priority Queue ADT
· [image: image3.jpg]

Characterized by deleteMin() operation; usually inefficient for find(k)

· Useful for greedy applications

· Implementations include

1. Simple stuff: array, linked lists (sorted or unsorted)

2. Binary heap

· Complete binary tree, nifty array storage

· Key operations: percolateUp(k) and percolateDown(k)

· buildHeap: linear time using Floyd’s method

· Constant average time for insert

· Can easily do increaseKey, decreaseKey, given location

3. Leftist heap

· Pointer based

· Null Path Length (npl) of left child (npl of right child

· Rightmost path of the tree guaranteed to be short
Operations looks only at the rightmost path

· [image: image4.jpg]

Provides efficient 2-pass merge: Θ(log n)
Can do it recursively or iteratively with stack

· All operations implemented using merge

4. Skew heap

· Pointer based

· Simpler: doesn’t worry about npl

· Still quite efficient: Θ(log n) amortized time 1-pass merge

5. Binomial Queues

· Combines the best of all worlds in pointer based implementation

· Constant average time insert, log(n) time other operations

· Forest of Binomial Trees of size 2i; related to binary representation

6. d-heap

· Motivation: huge data, can’t fit in memory, disk access required

· Goal: reduce disk accesses

· Strategy: reduce height, retrieve many elements at a time
Search ADT / Dictionary ADT
[image: image5.jpg]

· Characterized by find(k), insert(k), delete(k)

· Useful for search based applications

· Also useful for sorting based applications unless the data structure used is a hash table like structure that doesn’t organize data using ordering information

· Implementations include

1. Simple stuff: array, linked lists (sorted or unsorted)

2. Binary Search Tree (unbalanced)

· Θ(log n) average time for find, insert, delete; worst Θ(n)
· Θ(n log n) average time to build a BST; worst Θ(n2)
· deletion: replace with min of right subtree or max of left subtree

3. AVL Tree

· Balanced; worst case height = Θ(log n); proved using
Fibonacci type recurrence for max #nodes in a tree of height h
· Balance(x): difference in heights of x.left and x.right

· AVL property: balance(x) is between –1 and +1 for all x

· Single rotation for zig-zig; double rotation for zig-zag

4. Splay Tree

· [image: image6.jpg]

Simpler: don’t worry about balancing every node

· Still quite efficient: Θ(log n) amortized time operations

· Key idea: splay accessed element to the top
Uses zig-zig, zig-zag, and zig rotations
Gives good caching behavior

· Remove uses a new join operation

· Yet another operation: split(x)

5. B-trees

· Same motivation as d-heaps: huge data sets, minimize disk access

· Simple M-ary trees have problems

· 2 parameters: M, L

· All data stored in leaves

· Property: all internal nodes (M/2 full; leaves (L/2 full
Guarantees O(log M/2 n) depth

· Insertions can split node and propagate up

· Deletions can adopt, or merge nodes and propagate up

· Tree only grows or shrinks in height at the root
Gives guaranteed balance

· [image: image7.jpg]

Names you may encounter: 2-3 trees, 2-3-4 trees

· Hash table

· Implements the Search ADT with constant average time operations

· Not efficient for ordering based operations, such as deleteMin() or findRange(x,y)

· Key questions: good tableSize, good hash function, good collision resolution strategy

· Key parameter: load factor (
Performance goes down as (goes up

Approaches

· Separate chaining
· Mini dictionaries at each hash table entry
· Allow (> 1
· Open addressing
· Look for alternative location if cell already occupied
1. Linear probing: guaranteed insert if (< 1,
 but primary clustering
2. Double hashing: can avoid both types of clustering
 but more complex
3. Quadratic probing: guaranteed insert if (< ½,
 but secondary clustering
· Lazy deletion
· Rehashing: can be used with separate chaining or open addr,
 redistributes keys more evenly,
 can throw away lazily deleted elements

· Extendible hashing: same motivation as in d-heaps and B-trees,
 only two levels,
 one contains a directory of key prefixes,
 the other contains buckets with keys and data,
 insertion by bucket-split,
 insertion by directory-expansion

Page 1 of 4

