— Overview —

Zero-Knowledge Proofs: intro
Zero-Knowledge Proofs and Sets
Zero-Knowledge Sets: intro
William Pentney
Implementation of a ZK set
December 8, 2003
Extensions/Open Questions

Zero-knowledge Proofs Zero-Knowledge Proofs

| |

) Where is this useful?
Abstractly, a ZK proof involves:

» Generally: in showing knowledge of info without revealing it
e a prover and a verifier

e prover wants to convince verifier of statement X (with high probability)

e but prover does not want to reveal how to actually prove statement X * authentication over net
e cryptography
e remote maintenance of information
Huh? e etc
2 1
Zero-Knowledge Proofs Zero-Knowledge Proofs
— g — g
Note: typically, ZK proofs don't involve “perfect” proof Example: finding square roots of numbers mod p
Basic idea is to prove X with arbitrarily high probability Take some number r. Say n = r2 mod p.
e e.g. have a test that imposter can pass with probability 1 eg.r=5p=6,172=25n=r2modp=1.
e after n distinct tests, probability of success for imposter is W
e can thus prove with whatever confidence verifier wants r is the square root mod p of n.

Zero-Knowledge Proofs Zero-Knowledge Proofs

_| _|

Using the square roots mod p problem for fun and profit:
Interesting feature of and n = 2 mod p:
We can use this for basic authentication of identity
e given r, n is easy to compute
e but ... given only n, r is non-trivial to compute
— no efficient (poly time) algorithm known

e prover P wants to prove he is P to verifier V

e initially, P gives V' a large number n

e n has a square root mod p, r that only P knows

e by receiving 7, V can check n = 2 mod p

e V knows P is P - impostor couldn’t have guessed r

If p,r are very large, finding r from n is practically impossible

This is an example of a one-way function
However: we'd prefer not to transmit » publicly ...

Zero-Knowledge Proofs Zero-Knowledge Proofs

| |

P can prove with high probability that he knows r - without giving it away!

First P gives V' the value n. .
We would like our proof system to be:

Then:
1. complete - P can give correct answer every time

5 2. sound - P cannot lie, or an imposter can be caught

e P chooses random number m, sends V the value x = m< mod p) . ;

. 3. zero-knowledge - an eavesdropper can't find “secret” info from public
e V sends P random bit b € {0, 1})

_ b info
e P sends V the value y = mr
o V testsif y2 = zn® mod p
— since y2 = m2(r)2 = zn?
8 | 9
Zero-Knowledge Proofs Zero-Knowledge Proofs
— g — J

Completeness: P can successfully complete this for both b = 0 and 1
Zero-knowledge: can eavesdropper figure out r?
e need to know both m and mr, thus know r
Answer: no
Soundness: Imposter P’ can give the right answer w/prob. w
e eavesdropper sees either m and z, or mr and =

e guessifb=0o0rb=1 o neither is enough to find out r

e if b = 0 P’ can succeed - just osoommmﬁ, sendz,y =m

e if b =1 P’ chooses m, sends z = &|~ andy =m By repeating test n times, chance of impostor's success becomes about
1
2n

Correct answer is reliable with probability w

10 11

Overview —

—

“Zero Knowledge Sets” - S. Micali, M. Rabin, J. Killian, FOCS 2003

Goal: an efficient representation of zero-knowledge (ZK) sets

What characterizes ZK sets?

e membership can be proven/disproven without revealing other evidence

about set:
— cardinality,

— other members/nonmembers of set, etc.
e |deally, we'd like to do this efficiently (poly time)

Note: seems tough to prove non-membership without giving this away ...

EDB Verification Phase

—

P provides commitment

Basic procedure:

e P receives D and public random string T'

e P computes two keys:
— PK (public)
— SK (private)

EDB Verification Phase

—

P provides commitment

Basic procedure:

e P receives D and public random string T’

e P computes two keys:
— PK (public)
— SK (private)

12

14

T:010101111.
PK: 010101101101...

16

— ZK EDBs

We will to implement ZK elementary databases (EDBs)

Say we have:

prover P
verifier V-

.
.
oamﬁmcmmm.qmnﬂmmmamamwa:nzo:b”‘Hoqi*lﬁoqi*
e (we will say D(z) = L if a key z is not in database)

Two phases:

e commitment - P and V share commitment information

e verification - P is asked question, gives answer, proof to V', checked

using commitment

13

EDB Verification Phase

—

P provides commitment

Basic procedure:

e P receives D and public random string T’

e P computes two keys:
— PK (public)
— SK (private)

D ={(0.,1),(1

L

T:010101111...

15

EDB Verification Phase

—

P provides commitment

Basic procedure:

e P receives D and public random string T’

e P computes two keys:
— PK (public)
— SK (private)

T:010101111...
PK: 010101101101...

17

— EDB Proof Phase

Say V gives P a string

P findsy = D(x) (may be L)

Using SK, P produces a proof w of D(z) =y
V runs algorithm on 7, PK,and T’

V' concludes proof is valid or invalid

D(x)?
/ eavesdropper

T:010101111...

PK: 010101101101

18

— EDB Proof Phase

Say V gives P a string =

P findsy = D(x) (may be L)

Using SK, P produces a proof 7, of D(z) =y
V runs algorithm on 7y, PK, and T'

V concludes proof is valid or invalid

pi_x=01110111 ... hmmm..

/ \ eavestropper
T: 010101111,

PK: 010101101101,

20

— EDB Proof Phase

Say V gives P a string =

e Pfindsy= D(x) (may be L)

e Using SK, P produces a proof 7, of D(z) =y
e V runs algorithm on 7, PK,and T

e V concludes proof is valid or invalid

\ eavesdropper
T:010101111...

PK: 010101101101

22

— EDB Proof Phase

Say V gives P a string =

e Pfindsy= D(zx) (may be L)

e Using SK, P produces a proof 7 of D(z) =y
e V runs algorithm on 7, PK,and T

e V concludes proof is valid or invalid

D) =y proveit!

/ \ eavesropper
T:010101111...

PK: 010101101101...

19

— EDB Proof Phase

Say V gives P a string

P findsy = D(z) (may be 1)

Using SK, P produces a proof m; of D(z) =y
V runs algorithm on 7z, PK,and T’

V' concludes proof is valid or invalid

T:010101111...
PK: 010101101101..

21

EDB Proof Phase

—

Say V gives P a string

P findsy = D(z) (may be 1)

Using SK, P produces a proof 7y, of D(z) =y
V runs algorithm on 7, PK, and o

V concludes proof is valid or invalid

unhh... Liart

, \ eavesdropper
T:010101111...

PK: 010101101101..

23

Our Proof System Should Be:

—

Complete - for any EDB D, correct value of D(x) can be proven

Sound - PK commits prover to partial function D
e Nno one can, in polytime, find =, y, z, y # z, and prove D(z) = y and
D(z) ==z

e this ensures prover cannot lie, or imposter cannot forge result

Zero-knowledge -

e say V sees acommitmentto EDB D and sequence of proofs for x1, x5, ..

e then V queries trusted party about z1, z5... and only receives values
in response
e knowledge obtained by both processes should be identical

24

Commitment Schemes

—

We will try to calculate a commitment for our ZK set
A proof scenario: parties P and V' share random string T’

For P to commit:

e P s given input m
e P returns commitment string ¢ and keeps secret proof r

Later, for verification:

e P publicizes input c and r
e V checks ¢,r using m,T'

26

—

Pedersen’s Hash Function

—

Pederson’s commitment scheme yields a good hash function H(a,b) =
H(a, @vwﬂm?”

o H(a,b)pggn = g®h® mod p

It is very difficult to find two (a, b) that hash to the same value with this
function

We can thus trust that given H (a, b), it will be tough to find another set of
values c, d, such that H(c,d) = H(a,b)

28

—

ZK Set Preliminaries

—

Our ZK set construction will make use of:

e Pederson’s Commitment Scheme and hash function
e Merkle trees

We will now go over these ...

25

Pedersen’s Commitment Scheme

Common approach to commitment: 7" is public quadruple (p, q, g, h)

® p,gprime, glp — 1

e 7, is group of integers mod p

e Z, is a cyclic subgroup of Z) with g elements

e g, h generators of Z,
To commit, P picks random r, outputs ¢ = ¢"*h" mod p
To verify, V' gets ¢, r checks if c = ¢g"h" mod p
It is very, very difficult to find two m that produce same ¢

e relies on “Discrete Logarithm Assumption”

27

Trees

Let T}, = binary tree with 2% leaves
Label root node with e (empty string)

For a node v with parent w, label u with kb, where k = u’s label and b = 0 if
v is left child, 1 if v is right

29

— Merkle Trees

We will use Merkle trees to store our ZK set

How does a Merkle tree work?

e leaves may store data items (values in database)
e find hash function H mapping two items z, y to value z
o for node with children a and b, store H(a, b)

Value at root node is dependent on values in leaves

e represents a commitment to a particular tree

30

— Merkle Trees

To prove that node z stores a:

e look at nodes along path from root to x
e using values stored in nodes’ siblings, calculate ancestors
e compare result at root to commitment

32

— Merkle Trees

Say we have value stored in root, g

To prove that node x stores a:

e look at ancestors of z all the way up to root
e using values stored in nodes’ siblings, calculate ancestors
e compare result at root to commitment

34

— Merkle Trees

To prove that node z stores a:

e look at nodes along path from root to =
e using values stored in nodes’ siblings, calculate ancestors
e compare result at root to commitment

31

— Merkle Trees

Say we have value stored in root, g

To prove that node z stores a:

e look at ancestors of z all the way up to root
e using values stored in nodes’ siblings, calculate ancestors
e compare result at root to commitment

33

— Merkle Trees

Say we have value stored in root, g

To prove that node z stores a:
e look at ancestors of z all the way up to root

e using values stored in nodes’ siblings, calculate ancestors
e compare result at root to commitment

Verified!

35

Merkle Trees ZK EDB - Commitment

_| _|

Path from root to z with siblings represents authentication path
What we want to do:
Given M'’s root value, can we compute two different authentication paths
to prove y and z both stored in z? e create a commitment using Merkle trees, as described above
e but - don’t want to give away too much info about values in tree
e choose a good hash function (e.g. Pedersen’s), and this is infeasible

36 37

ZK EDB - Commitment ZK EDB - Commitment

| |
What we do:
e start w/hash function H (Pedersen’s hash function)
e create Merkle tree for data
o for key/value pair (z,y), store H(y) in tree leaf H(z)
Each node in tree has a stored value and a commitment value correspond- e store O in empty siblings as needed
ing to it e calculate commitment ¢ for each leaf using Pedersen’s commitment

scheme
for parent p of nodes a and b, store H(a,b) inp
calculate commitment ¢ for p using Pedersen’s commitment scheme

Verifier has a hash function H available to it (public info)

Do this in recursive, bottom-up fashion through Merkle tree

Final commitment given to verifier by prover is commitment c for root

38 39

ZK EDB - Verification ZK EDB - Verification

| |

Now, say we want to prove (z, y) is key/value pair in database If we want to prove = is NOT a key in database, it's trickier

e give values and commitments for each node from leaf up to root, along

G(z) may not be in Merkle tree

with its sibling e we could show that ancestor node of G(z) in binary tree is a leaf, and
e (actually, we give more than this - details, details) therefore G(z) is not in tree
e verifier checks that root commitment matches original commitment e but this would show too much info about tree!
o verifier confirms, using hash function H, that prover did not “cheat” e we know about non-members of set ...

40 41

ZK EDB - Verification ZK EDB - Verification

—

We apply clever technique to “fake” nodes in Merkle tree

—

e set up commitment so that we can change it for empty leaves To prove D(x) not in database, we “weld” a new subtree to our tree:

To prove D(z) = L create a fake subtree containing node G(z) con-
taining O, fill in values of parents as needed, and give path from G(x) to
root

find furthest leaf w in tree on path from root to =

node G(z) with 0, calculate commitment c

calculate commitments for parents until we reach leaf u

give u a new “fake” commitment to match new hash values from sub-
tree

Merkle tree

Give nodes in path from G(z) to root and their siblings; V' will see correct
proof but not know that other nodes are really empty

<=—— "faked" subtree

H(x)

42 43

Additional Notes Open Questions

| |

The construction described can be enhanced so:
Can a ZK set be updated at low cost?

one can not show whether z € D and exactly what D(X) is (anony-

mous statistics) Can we handle multiple provers?
e prove portions of info in D(x)
e only certain people may read D(z), or portions of D(z) Can we consider other ZK operations/data structures as well?

database can be distributed in nature

44 45

