Introduction to
Information Retrieval

Ethan Phelps-Goodman

Some slides taken from
http://lwww.cs.utexas.edu/users/mooney/ir-course/

Information Retrieval
(IR)

» The indexing and retrieval of textual
documents.

« Searching for pages on the World Wide
Web is the most recent “killer app.”

» Concerned firstly with retrieving relevant
documents to a query.

» Concerned secondly with retrieving from
large sets of documents efficiently.

Why do we need IR?

* 3 billion documents indexed in Google
» 10-20 Terabytes of text on web

» ~1000 Terabytes of information (digital &

non-digital) produced every year.
http://www.sims.berkeley.edu/research/projects/how-much-info/,

 Personal information: 20 emails/day. 200
emails/day?

Lecture Overview

* Theoretical Models of IR

« Data structures for efficient
implementation

* IR for web

Basics of an IR system
* What is a document?

—“Bag of words” model. Same as project 3.
— Problems:

— Much more complicated systems imaginable

IR System
Document
corpus
Query | U8
?
1. Docl
2. Doc2

Ranked 3.Doc3
Document .

Boolean Model

¢ Query terms and boolean operators AND,
OR, NOT
— (cat OR dog) AND (collar OR leash)

* Pros

¢ Cons

Vector space model

» Think of a document as a vector in a
space.

» One dimension for each word, so huge
dimension space.

 The similarity of two documents (or a
document and a query) can be thought of
as the distance between the vectors in the
space.

example

» Docl = “See Spot run.”

* Doc2 = “Run spot, run.”

» 3 dimensions: run, spot, and see

« Docl {1,1,1}

« Doc2 {1,1,0}

» For now assume each entry is 1 if word
appears in document and 0 otherwise

Vector-based representation

. Term1

Similartiy

* How could we define similarity?

Euclidean distance, Manhattan distance, word
overlap, plenty more.

* Inner product measure is common:

Xe y:zxi R

Problems w/ inner product

« This similarity metric just counts number of
words in common with query.

* What does this leave out? What went
wrong with your document correlator?

Weighting continued

* How often does a term occur?

— Weight each term by its frequency in
document.

* How common is term in collection.

— Weight by inverse document frequency.

¢ How big is document?
— Divide inner product by document size.

Cosine Measure

« tf*idf weighting is standard:
w, =tf [idf
tf =#of timesword occursin document

H - #documentsin collection
idf =log(Fimmeonanmwod)

* Similarity metric is:

X.y:Zx ,
Ix10yl

Implementation

» Model says: given query, go out and
compute similarity on all document
vectors.

* Problems?

Sparse Vectors

» Vocabulary and therefore dimensionality of
vectors can be very large, ~10%.

¢ However, most documents and queries do
not contain most words, so vectors are
sparse (i.e. most entries are 0).

» Need efficient methods for storing and
computing with sparse vectors.

Ideas?

Inverted Files

* An inverted file is just a dictionary ADT
that maps from words to documents
containing that word.

Inverted Index

Index terms df
computer | 3——[D.a [[]
dadae | 5 |—{D,3 []

science 4 *4" D, 4 | \ ‘ ‘
ssem | 1{—[b,2 |
Index file Postingslists

Retrieval with an Inverted Index

» Tokens that are not in both the query
and the document do not effect cosine
similarity.

— Product of token weights is zero and does
not contribute to the dot product.
 Usually the query is fairly short, and
therefore its vector is extremely sparse.
» Use inverted index to find the limited set

of documents that contain at least one of
the query words.

Inverted Query Retrieval
Efficiency

» Assume that, on average, a query word
appears in B documents:

Q= q Oy
AN

» Then retrieval time is O(|Q| B), which is
typically, much better than naive retrieval
that examines all N documents, O(|V| N),
because |Q| << |V| and B << N.

IR for World Wide Web

 Lots of challenges:
— Heterogeneous data—many formats, media types,
languages
— Very little structure known a priori
— Constantly changing
— Demanding users: average query is 2.4 words long,
and users expect desired page to be at top of list
— Huge amount of data:
« 320 million pages in '98
« 800 million pages in '99
« 3 billion indexed by Google in 2003
« Appears to be growing exponentially!

Handling that much data

* A mixture of:
— Duplicate data over many machines to
balance load
— Split inverted file into sections and assign
machines to sections

« Assign popular sections to larger cluster of
machines

Spiders

« How do we collect pages to index?

e Web is just a graph
— Each URL is a vertex
— Each hyperlink is an outgoing edge

e So start with some set of known sites, and
expand out from there.

Basic crawling algorithm

« Start with a set of known sites

¢ While there are pages left in the queue:
— Retrieve a page.
— If page hasn't been seen yet,
« Index page
« Extract links from page and add to queue

Updating index

« Index must be continually updated.
» Which pages to update?
— Keep track of popularity of pages. Refresh
poplar pages more often.
— Update pages that change often:
« Periodically check pages for changes.
» Keep a history of how often pages change.
 Refresh more dynamic pages more often.

Standard Web Search Engine Architecture

What do people search for on the web?
I 50,000 queries from excite 1997
I Most frequent terms:

* 4660 sex « 1223 hotmail
¢ 3129 yahoo « 1163 games
¢ 2191 internal site admin ¢ 1151 mp3
check from kho « 1140 weather
* 1520 chat + 1127 www.yahoo.com
+ 1498 porn « 1110 maps
« 1315 horoscopes 1036 yahoo.com
* 1284 pokemon + 983 ebay
» 1283 SiteScope test + 980 recipes

PageRank

 Practically any query will return thousands
or millions of documents on the web.

¢ Users typically don't have a particular
page they'’re looking for. The just want the
“best” page on the topic.

« “Best” doesn'’t just mean similar terms:

— Users want sites that are reliable and
infomative—sites that are “authorities” on the
subject

Web Popularity Contest

Some pages are authorities

Some pages are hubs

Authorities are pointed to by lots of good
pages.

Hubs point to lots of good pages.

Many exact definitions and algorithms.
We'll look at a simple version of Google’s
PageRank algorithm.

Page Rank

» Using the in-degree of a pages gives a
measure of popularity.

» But not all links are equal. A link from a highly
ranked page counts for more than a link from a
lowly ranked page.

* The rank of a page is based on the sum of the
ranks of the pages that point to it:

_ rank(b)
rank(p) = sz,m out— degree(b)

Initial PageRank ldea

« Using the in-degree of a pages gives a measure of popularity.

« But not all links are equal. A link from a highly ranked page counts
for more than a link from a lowly ranked page.

< Initial page rank equation for page p:

F%(|O)=CZm

qq-p Nq

— Nyis the total number of out-links from page g.
— Apage, g, “gives” an equal fraction of its authority to all the pages it
points to (e.g. p).

— cis anormalizing constant set so that the rank of all pages always sums
tol.

» Can view it as a process of PageRank
“flowing” from pages to the pages they
cite. 08]

AYANE

Initial Algorithm

* lterate rank-flowing process until
convergence:
Let S be the total set of pages.
Initialize OpOS: R(p) = 1/[S|
Until ranks do not change (much) (convergence)
For each pOS:
R(p= 3 5O

aq-p q
c=1/>"R(p)
Sy
For e;ch pOS: R(p) =cR’(p) (normalize)

Problem with Initial Idea

A group of pages that only point to
themselves but are pointed to by other
pages act as a “rank sink” and absorb all
the rank in the system.

Rank flowsinto
cycleand can't get out

Rank Source

* Introduce a “rank source” E that
continually replenishes the rank of each
page, p, by a fixed amount E(p).

OEED) Rh(,q)+E(p)J

aq-p 'Ng

Random Surfer Model

* PageRank can be seen as modeling a
“random surfer” that starts on a random page
and then at each point:

— With probability E(p) randomly jumps to page p.
— Otherwise, randomly follows a link on the current
page.

* R(p) models the probability that this random
surfer will be on page p at any given time.

¢ “E jumps” are needed to prevent the random
surfer from getting “trapped” in web sinks with
no outgoing links.

Speed of Convergence

Early experiments on Google used 322
million links.

PageRank algorithm converged (within
small tolerance) in about 52 iterations.

» Number of iterations required for
convergence is empirically O(log n) (where
n is the number of links).

» Therefore calculation is quite efficient.

Simple Title Search with
PageRank

» Use simple Boolean search to search
web-page titles and rank the retrieved
pages by their PageRank.

» Sample search for “university”:

— Altavista returned a random set of pages with
“university” in the title (seemed to prefer short
URLS).

— Primitive Google returned the home pages of
top universities.

Google Ranking

» Complete Google ranking includes (based
on university publications prior to
commercialization).

— Vector-space similarity component.
— Keyword proximity component.

— HTML-tag weight component (e.g. title
preference).

— PageRank component.

¢ Details of current commercial ranking
functions are trade secrets.

Google PageRank-Biased
Spidering
» Use PageRank to direct (focus) a spider
on “important” pages.
» Compute page-rank using the current set
of crawled pages.

* Order the spider’s search queue based on
current estimated PageRank.

Link Analysis Conclusions

« Link analysis uses information about the
structure of the web graph to aid search.

« |t is one of the major innovations in web
search.

* It is the primary reason for Google’s
success.

IR is getting more and more important
Lots of interesting theoretical questions.
Lots of interesting engineering questions.

Also lots of interesting human related
guestions.

