
1

Introduction to
Information Retrieval

Ethan Phelps-Goodman

Some slides taken from
http://www.cs.utexas.edu/users/mooney/ir-course/

Information Retrieval
(IR)

• The indexing and retrieval of textual
documents.

• Searching for pages on the World Wide
Web is the most recent “killer app.”

• Concerned firstly with retrieving relevant
documents to a query.

• Concerned secondly with retrieving from
large sets of documents efficiently.

Why do we need IR?

• 3 billion documents indexed in Google
• 10-20 Terabytes of text on web
• ~1000 Terabytes of information (digital &

non-digital) produced every year.
(http://www.sims.berkeley.edu/research/projects/how-much-info/)

• Personal information: 20 emails/day. 200
emails/day?

Lecture Overview

• Theoretical Models of IR
• Data structures for efficient

implementation
• IR for web

Basics of an IR system

• What is a document?
– “Bag of words” model. Same as project 3.
– Problems:

– Much more complicated systems imaginable

IR System

IR
System

Query
String

Document
corpus

Ranked
Documents

1. Doc1
2. Doc2
3. Doc3

.

.

2

Boolean Model

• Query terms and boolean operators AND,
OR, NOT
– (cat OR dog) AND (collar OR leash)

• Pros

• Cons

Vector space model

• Think of a document as a vector in a
space.

• One dimension for each word, so huge
dimension space.

• The similarity of two documents (or a
document and a query) can be thought of
as the distance between the vectors in the
space.

example

• Doc1 = “See Spot run.”
• Doc2 = “Run spot, run.”
• 3 dimensions: run, spot, and see

• Doc1 à {1, 1, 1}
• Doc2 à {1, 1, 0}

• For now assume each entry is 1 if word
appears in document and 0 otherwise

Vector-based representation

Term 1

Term 2

Term 3

Doc 1

Doc 2

Doc 3

• How could we define similarity?

• Euclidean distance, Manhattan distance, word
overlap, plenty more.

• Inner product measure is common:

Similartiy

� ⋅=• ii yxyx

Problems w/ inner product

• This similarity metric just counts number of
words in common with query.

• What does this leave out? What went
wrong with your document correlator?

3

Weighting continued

• How often does a term occur?
– Weight each term by its frequency in

document.

• How common is term in collection.
– Weight by inverse document frequency.

• How big is document?
– Divide inner product by document size.

Cosine Measure

• tf*idf weighting is standard:

• Similarity metric is:

)log(

documentin occurs word timesof #

w

 wordcontaining documents #
collectionin documents #

i

=
=

⋅=

idf

tf

idftf

|||| yx

yx
yx ii

⋅
⋅

=• �

Implementation

• Model says: given query, go out and
compute similarity on all document
vectors.

• Problems?

Sparse Vectors

• Vocabulary and therefore dimensionality of
vectors can be very large, ~104 .

• However, most documents and queries do
not contain most words, so vectors are
sparse (i.e. most entries are 0).

• Need efficient methods for storing and
computing with sparse vectors.

Ideas? Inverted Files

• An inverted file is just a dictionary ADT
that maps from words to documents
containing that word.

4

Inverted Index

system

computer

database

science D2, 4

D5, 2

D1, 3

D7, 4

Index terms df

3

2

4

1

Dj, tfj

Index file Postings lists

• • •

Retrieval with an Inverted Index
• Tokens that are not in both the query

and the document do not effect cosine
similarity.
– Product of token weights is zero and does

not contribute to the dot product.

• Usually the query is fairly short, and
therefore its vector is extremely sparse.

• Use inverted index to find the limited set
of documents that contain at least one of
the query words.

Inverted Query Retrieval
Efficiency

• Assume that, on average, a query word
appears in B documents:

• Then retrieval time is O(|Q| B), which is
typically, much better than naïve retrieval
that examines all N documents, O(|V| N),
because |Q| << |V| and B << N.

Q = q1 q2 … qn

D11…D1B D21…D2B Dn1…DnB

IR for World Wide Web

• Lots of challenges:
– Heterogeneous data—many formats, media types,

languages
– Very little structure known a priori
– Constantly changing
– Demanding users: average query is 2.4 words long,

and users expect desired page to be at top of list
– Huge amount of data:

• 320 million pages in ’98
• 800 million pages in ’99
• 3 billion indexed by Google in 2003
• Appears to be growing exponentially!

Handling that much data

• A mixture of:
– Duplicate data over many machines to

balance load

– Split inverted file into sections and assign
machines to sections

• Assign popular sections to larger cluster of
machines

Spiders

• How do we collect pages to index?
• Web is just a graph

– Each URL is a vertex
– Each hyperlink is an outgoing edge

• So start with some set of known sites, and
expand out from there.

5

Basic crawling algorithm

• Start with a set of known sites
• While there are pages left in the queue:

– Retrieve a page.
– If page hasn’t been seen yet,

• Index page
• Extract links from page and add to queue

Updating index

• Index must be continually updated.
• Which pages to update?

– Keep track of popularity of pages. Refresh
poplar pages more often.

– Update pages that change often:
• Periodically check pages for changes.
• Keep a history of how often pages change.
• Refresh more dynamic pages more often.

Standard Web Search Engine Architecture

��������	
�	

��	��	����
��
	��	�
���	�

��	���������������	��
����	���	�
�����	���

Inverted
index

Search
engine
servers

user
query

������	������
�����	�

DocIds

What do people search for on the web?

• 4660 sex
• 3129 yahoo
• 2191 internal site admin

check from kho
• 1520 chat
• 1498 porn
• 1315 horoscopes
• 1284 pokemon
• 1283 SiteScope test

• 1223 hotmail
• 1163 games
• 1151 mp3
• 1140 weather
• 1127 www.yahoo.com
• 1110 maps
• 1036 yahoo.com
• 983 ebay
• 980 recipes

l �����������	�
����
����	�������

l � �
��������������

�

PageRank

• Practically any query will return thousands
or millions of documents on the web.

• Users typically don’t have a particular
page they’re looking for. The just want the
“best” page on the topic.

• “Best” doesn’t just mean similar terms:
– Users want sites that are reliable and

infomative—sites that are “authorities” on the
subject

Web Popularity Contest

• Some pages are authorities
• Some pages are hubs
• Authorities are pointed to by lots of good

pages.

• Hubs point to lots of good pages.
• Many exact definitions and algorithms.

We’ll look at a simple version of Google’s
PageRank algorithm.

6

Page Rank

• Using the in-degree of a pages gives a
measure of popularity.

• But not all links are equal. A link from a highly
ranked page counts for more than a link from a
lowly ranked page.

• The rank of a page is based on the sum of the
ranks of the pages that point to it:

�
→ −=

)(:)degree(out
)rank(

)rank(
pbb

b
b

cp

Initial PageRank Idea
• Using the in-degree of a pages gives a measure of popularity.
• But not all links are equal. A link from a highly ranked page counts

for more than a link from a lowly ranked page.
• Initial page rank equation for page p:

– Nq is the total number of out-links from page q.
– A page, q, “gives” an equal fraction of its authority to all the pages it

points to (e.g. p).
– c is a normalizing constant set so that the rank of all pages always sums

to 1.

�
→

=
pqq qN

qR
cpR

:

)(
)(

• Can view it as a process of PageRank
“flowing” from pages to the pages they
cite.

.1

.09

.05

.05

.03

.03

.03

.08

.08

.03

Initial Algorithm
• Iterate rank-flowing process until

convergence:
Let S be the total set of pages.
Initialize ∀p∈S: R(p) = 1/|S|
Until ranks do not change (much) (convergence)

For each p∈S:

For each p∈S: R(p) = cR´(p) (normalize)

�
→

=′
pqq qN

qR
pR

:

)(
)(

�
∈

′=
Sp

pRc)(/1

Problem with Initial Idea

• A group of pages that only point to
themselves but are pointed to by other
pages act as a “rank sink” and absorb all
the rank in the system.

Rank flows into
cycle and can’ t get out

Rank Source

• Introduce a “rank source” E that
continually replenishes the rank of each
page, p, by a fixed amount E(p).

�
�

�

�

�
�

�

�
+= �

→

)(
)(

)(
:

pE
N

qR
cpR

pqq q

7

Random Surfer Model
• PageRank can be seen as modeling a

“random surfer” that starts on a random page
and then at each point:
– With probability E(p) randomly jumps to page p.
– Otherwise, randomly follows a link on the current

page.

• R(p) models the probability that this random
surfer will be on page p at any given time.

• “E jumps” are needed to prevent the random
surfer from getting “trapped” in web sinks with
no outgoing links.

Speed of Convergence

• Early experiments on Google used 322
million links.

• PageRank algorithm converged (within
small tolerance) in about 52 iterations.

• Number of iterations required for
convergence is empirically O(log n) (where
n is the number of links).

• Therefore calculation is quite efficient.

Simple Title Search with
PageRank

• Use simple Boolean search to search
web-page titles and rank the retrieved
pages by their PageRank.

• Sample search for “university”:
– Altavista returned a random set of pages with

“university” in the title (seemed to prefer short
URLs).

– Primitive Google returned the home pages of
top universities.

Google Ranking
• Complete Google ranking includes (based

on university publications prior to
commercialization).
– Vector-space similarity component.

– Keyword proximity component.
– HTML-tag weight component (e.g. title

preference).

– PageRank component.

• Details of current commercial ranking
functions are trade secrets.

Google PageRank-Biased
Spidering

• Use PageRank to direct (focus) a spider
on “important” pages.

• Compute page-rank using the current set
of crawled pages.

• Order the spider’s search queue based on
current estimated PageRank.

Link Analysis Conclusions

• Link analysis uses information about the
structure of the web graph to aid search.

• It is one of the major innovations in web
search.

• It is the primary reason for Google’s
success.

8

• IR is getting more and more important
• Lots of interesting theoretical questions.
• Lots of interesting engineering questions.

• Also lots of interesting human related
questions.

