
1

CSE 326: Data Structures

Topic #13: Sorting Lower Bounds
and Breaking the (n log n) Barrier

Ashish Sabharwal

Autumn, 2003

2

Today’s Outline

– Thanks for the feedback!

• Finish QuickSort, QuickSelect

• Lower Bounds
– general flavor

– for sorting

• Breaking the barrier: BucketSort, RadixSort

3

Feedback Summary
Things going well

– pace of lectures

– tablet PC stuff

– group quizzes, midterm review

Issues
– pace of lectures

– tablet PC stuff

– quiz section coordination with lecture /
other Q.S.

– PS slides vs. PDF slides

Thanks!

4

Lower Bounds:
for An Algorithm

Algorithm A has a lower bound
�

(T(n)) if there exists an
input of size n on which A takes

�
(T(n)) time.

E.g.
• insertion in Binary Heap has lower bound � (log n)

because inserting a very small element requires
� (log n) percolateUp operations.

• Insertion Sort has lower bound � (n2) because it needs
so many operations when input it reverse sorted

5

Lower Bounds:
for A Problem

Problem P has a lower bound
�

(T(n)) if
for every algorithm A that solves P, there exists
an input of size n on which A takes

�
(T(n)) time.

• Very hard to prove because they must hold for any
algorithm to solve P !!!

• Strategy: restrict computational model
– Turing machines: very general, no lower bounds known
– Circuits with and, or, not gates: more structured, still hard
– Circuits w/o any not gates : know non-trivial bounds
– Proof systems : the area I work in
– …

6

Lower Bounds:
for Classes of Algorithms

Problem P has a lower bound
�

(T(n)) under class C if
for every algorithm A ∈∈∈∈ C that solves P, there exists
an input of size n on which A takes

�
(T(n)) time.

Still quite hard, but feasible. E.g.

• Sorting using only comparisons: � (n log n)
– Applies to insertion sort, selection sort, bubble sort, shell

sort, merge sort, quick sort, heap sort, tree sort, and any
other sorting algorithm based only on comparisons!

• Sorting by only exchanging adjacent elements: � (n2)
– Average-case; applies to insertion sort, selection sort, bubble

sort, and any other sorting algorithm satisfying the criterion!

2

7

Lower Bound #1

Proof idea:

• Count the average number of inversions in an array

• Argue that each exchange of adjacent elements can fix
only one inversion

– Gives � (n2) average-case lower bound for insertion sort,
selection sort, bubble sort, and any other sorting algorithm
that satisfies the criterion!

Theorem: Any algorithm that sorts by comparing and exchanging
only adjacent elements must take

�
(n2) time on average.

Details on white board; in book

8

Lower Bound #2

Proof idea:

• Represent given algorithm as a decision tree

• Argue that decision tree must have depth � (n log n)

• Conclude that algorithm must take so much time

– Gives � (n log n) worst-case lower bound for all sorting
algorithms we have seen, and any others that satisfy the
criterion!

Theorem: Any algorithm that sorts by only comparing elements
must take

�
(n log n) time in the worst case.

Details on white board; in book

9

BucketSort (akaBinSort)
If all values to be sorted are known to be between 1 and K,
create an array count of size K, increment counts while
traversing the input, and finally output the result.

Example K=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

5

4

3

2

1

count array

Running time?
10

BucketSort Complexity: (n+K)

• Case 1: K is a constant
– BinSort is linear time

• Case 2: K is variable
– Not simply linear time

– Could even be worst than quadratic!

• Case 3: K is constant but large (e.g. 232)
– ???

11

Digression: Stable Sorting

• Stable Sorting algorithm
– Items in input with the same value end up in the

same order as when they began.

• Are the following stable:
– BucketSort?

– MergeSort?

– QuickSort?

12

Fixing impracticality: RadixSort

• Radix = “The base of a number system”
– We’ ll use 10 for convenience, but could be anything

• Idea: BucketSort on each digit, least significant
to most significant (lsd to msd)

3

13

RadixSort – magic!
• Input:126, 328, 636, 341, 416, 131, 328

9876543210

BucketSort on lsd:

9876543210

BucketSort on next-higher digit:

9876543210

BucketSort on msd:

14

Not magic… it provably works

Claim: after ith BucketSort, i lsd’s are sorted.
– e.g. K=10, i=3, values 1776 and 8234:

8234 comes before 1776 after the 3rd pass.

Proof: By induction. (left as an exercise)

15

Time to play at home…

• RadixSort the following values using K=10:

95, 3, 927, 187, 604, 823, 805, 422, 159, 98, 123,
3, 987, 125.

• Given arbitrary numbers A1, A2, …An, and a base
K, what is the overall running time of radix sort?

16

(extra space)

17

Radixsort: Complexity

• How many passes?

• How much work per pass?

• Total time?

• Conclusion?

• In practice
– RadixSort only good for large number of elements with

relatively small values
– Hard on the cache compared to MergeSort/QuickSort 18

What data types can you RadixSort?

• Any type T that can be BucketSorted

• Any type T that can be broken into parts A and
B such that
– You can reconstruct T from A and B

– A can be RadixSorted

– B can be RadixSorted

– A is always more significant than B, in ordering

4

19

RadixSorting Numbers

• 1-digit numbers can be BucketSorted
• 2 to 5-digit numbers can be BucketSorted

without using too much memory
• 6-digit numbers, broken up into A=first 3 digits,

B=last 3 digits, can be RadixSorted
– A and B can reconstruct original 6-digits
– A and B are both RadixSortableas above
– A always more significant than B

20

RadixSorting Strings

• 1 character can be BucketSorted

• A few characters can be BucketSorted

• Break larger strings into characters or groups of
characters
– e.g. break names into last name, first name;

sort on first name, then sort (stably) on last name

21

To Do

• Keep working on Project #3

• Finish reading Chapter 7
(don’ t spend too much time on External Sorting)

