CSE 326: Data Structures

Topic #13: Sorting Lower Bounds and Breaking the $\Omega(n \log n)$ Barrier

Ashish Sabharwal Autumn, 2003

Today's Outline

- Thanks for the feedback!

- Finish QuickSort, QuickSelect
- Lower Bounds
 - general flavor
 - for sorting
- Breaking the barrier: BucketSort, RadixSort

Lower Bounds: for An Algorithm

Algorithm A has a lower bound $\Omega(T(n))$ if there exists an input of size *n* on which A takes $\Omega(T(n))$ time.

E.g.

- insertion in Binary Heap has lower bound $\Omega(\log n)$ because inserting a very small element requires $\Omega(\log n)$ percolateUp operations.
- Insertion Sort has lower bound $\Omega(n^2)$ because it needs so many operations when input it reverse sorted

Lower Bounds: for A Problem

Problem *P* has a lower bound $\Omega(T(n))$ if for every algorithm A that solves P, there exists an input of size *n* on which *A* takes $\Omega(T(n))$ time.

- Very hard to prove because they must hold for any algorithm to solve P !!!
- Strategy: restrict computational model
 - Turing machines: very general, no lower bounds known
 - Circuits with and, or, not gates : more structured, still hard
 - : know non-trivial bounds - Circuits w/o any not gates : the area I work in
 - Proof systems
 - ...

Lower Bounds:

for Classes of Algorithms

Problem *P* has a lower bound $\Omega(T(n))$ under class *C* if for every algorithm $A \in C$ that solves P, there exists an input of size *n* on which A takes $\Omega(T(n))$ time.

Still quite hard, but feasible. E.g.

- Sorting using only comparisons: Ω(*n* log *n*) Applies to insertion sort, selection sort, bubble sort, shell sort, merge sort, quick sort, heap sort, tree sort, and any other sorting algorithm based only on comparisons!
- Sorting by only exchanging adjacent elements: Ω(n²) Average-case; applies to insertion sort, selection sort, bubble sort, and any other sorting algorithm satisfying the criterion!

Lower Bound #2

Theorem: Any algorithm that sorts by only comparing elements must take $\Omega(n \log n)$ time *in the worst case*.

Details on white board; in book

• Represent given algorithm as a decision tree

Proof idea:

- Argue that decision tree must have depth $\Omega(n \log n)$
- Conclude that algorithm must take so much time

- Gives $\Omega(n \log n)$ worst-case lower bound for *all* sorting algorithms we have seen, and *any* others that satisfy the criterion!

BucketSort Complexity: $\Theta(n+K)$

- Case 1: *K* is a constant – BinSort is linear time
- Case 2: *K* is variable
 - Not simply linear timeCould even be worst than quadratic!
- Case 3: *K* is constant but large (e.g. 2³²) - ???

Fixing impracticality: RadixSort

- Radix = "The base of a number system" – We'll use 10 for convenience, but could be anything
- <u>Idea</u>: BucketSort on each digit, least significant to most significant (lsd to msd)

10

12

RadixSort – magic!											
• Input: 126, 328, 636, 341, 416, 131, 328											
	0	1	2	3	4	5	6	7	8	9	
Bı		rt on nex	t-higher	digit:		-					
	0	1	2	3	4	5	6	7	8	9	
BucketSort on msd:											
	0	1	2	3	4	5	6	7	8	9	
											3

Time to play at home... RadixSort the following values using *K*=10: 95, 3, 927, 187, 604, 823, 805, 422, 159, 98, 123, 3, 987, 125. Given arbitrary numbers A₁, A₂, ...A_n, and a base *K*, what is the overall running time of radix sort?

Radixsort: Complexity

15

17

- How many passes?
- How much work per pass?
- Total time?
- Conclusion?
- In practice
 - RadixSort only good for large number of elements with relatively small values
 - Hard on the cache compared to MergeSort/QuickSort

What data types can you RadixSort?

- Any type T that can be BucketSorted
- Any type T that can be broken into parts A and B such that
 - You can reconstruct T from A and B
 - A can be RadixSorted
 - B can be RadixSorted
 - A is always more significant than B, in ordering

18

RadixSorting Numbers

- 1-digit numbers can be BucketSorted
- 2 to 5-digit numbers can be BucketSorted without using too much memory
- 6-digit numbers, broken up into A=first 3 digits, B=last 3 digits, can be RadixSorted
 - A and B can reconstruct original 6-digits
 - A and B are both RadixSortable as above
 - $-\ A$ always more significant than B

RadixSorting Strings

- 1 character can be BucketSorted
- A few characters can be BucketSorted
- Break larger strings into characters or groups of characters
 - e.g. break names into last name, first name; sort on first name, then sort (stably) on last name

20

To Do

21

- Keep working on Project #3
- Finish reading Chapter 7 (don't spend too much time on External Sorting)