CSE 326: Data Structures

Topic #13: Sorting Lower Bounds
and Breaking the Q(n log n) Barrier

Ashish Sabharwal
Autumn, 2003

v

Today’ s Outline
— Thanks for the feedback!

¢ Finish QuickSort, QuickSelect
» Lower Bounds

— general flavor

— for sorting

* Breaking the barrier: BucketSort, RadixSort

Feedback Summary

Things going well
— pace of lectures
— tablet PC stuff
— group quizzes, midterm review

Issues
— pace of lectures
— tablet PC stuff

— quiz section coordination with lecture /
other Q.S.

— PSdlidesvs. PDF slides

Lower Bounds:
for An Algorithm

Algorithm A hasa lower bound (T(n)) if there existsan
input of size n on which A takes (T(n)) time.

E.g.

* insertion in Binary Heap has lower bound Q(log n)
because inserting a very small element requires
Q(log n) percolateUp operations.

« Insertion Sort has lower bound Q(n?) becauseit needs
SO many operations when input it reverse sorted

Lower Bounds;
for A Problem

Problem P hasalower bound Q(T(n)) if
for every algorithm A that solves P, there exists
an input of size n on which A takes (T(n)) time.

Very hard to prove because they must hold for any
algorithmto solve P !!!

 Strategy: restrict computational model

— Turing machines: very genera, no lower bounds known

— Circuits with and, or, not gates: more structured, still hard
— Circuits w/o any not gates : know non-trivial bounds
— Proof systems :theareal work in

Lower Bounds:
for Classes of Algorithms

Problem P hasa lower bound Q(T(n)) under class C if
for every algorithm A O C that solves P, there exists
an input of sizen on which A takes Q(T(n)) time.

Still quite hard, but feasible. E.g.

 Sorting using only comparisons: (n log n)
— Appliesto insertion sort, selection sort, bubble sort, shell
sort, merge sort, quick sort, heap sort, tree sort, and any
other sorting algorithm based only on comparisons!
 Sorting by only exchanging adjacent elements: Q(n?)
— Average-case; applies to insertion sort, selection sort, bubble
sort, and any other sorting algorithm satisfying the criterion! .




Lower Bound #1

Theorem: Any algorithm that sorts by comparing and exchanging
only adjacent elements must take £(n?) time on average.

| Details on white board, in book

Proof idea:
» Count the average number of inversionsin an array

» Arguethat each exchange of adjacent elements can fix
only oneinversion

— Gives Q(n?) average-case lower bound for insertion sort,
selection sort, bubble sort, and any other sorting algorithm
that satisfies the criterion!

Lower Bound #2

Theorem: Any algorithm that sorts by only comparing elements
must take Q(n log n) timein the worst case.

{ Details on white board; in book |

Proof idea:
* Represent given algorithm as a decision tree

« Arguethat decision tree must have depth Q(n log n)
¢ Conclude that algorithm must take so much time

— Gives Q(n log n) worst-case lower bound for all sorting
algorithms we have seen, and any others that satisfy the
criterion!

BucketSort (aka BinSort)

If all values to be sorted are known to be between 1 and K,
create an array count of size K, increment counts while
traversing the input, and finally output the result.

Example K=5. Input=(5,1,3,4,3,2,1,1,5,4,5)

count array

1 »

Running time?

ajlbhiwiN

BucketSort Complexity: ®(n+K)

» Case 1: K isaconstant
— BinSort islinear time
e Case2: Kisvariable
— Not smply linear time
— Could even beworst than quadratic!

» Case 3: K isconstant but large (e.g. 2%?)
-7

Digression: Stable Sorting

* Stable Sorting algorithm

— Itemsin input with the same value end up in the
same order as when they began.

¢ Arethefollowing stable:
— BucketSort?
— MergeSort?
— QuickSort?

11

Fixing impracticality: RadixSort

» Radix = “The base of a number system”
— WEe'll use 10 for convenience, but could be anything

* ldea: BucketSort on each digit, least significant
to most significant (Isd to msd)




BucketSort on | sd:

BucketSort on msd:

RadixSort — magic!

* Input:126, 328, 636, 341, 416, 131, 328

0 1 2 3 4 5 6 7 8 9

BucketSort on next-higher digit:

0 1 2 3 4 5 6 7 8 9

Not magic... it provably works

Claim: after it BucketSort, i Isd’s are sorted.

—eg. K=10, i=3, values 1776 and 8234:
8234 comes before 1776 after the 34 pass.

Proof: By induction. (left as an exercise)

Timeto play a home...

« RadixSort the following values using K=10:

95, 3,927, 187, 604, 823, 805, 422, 159, 98, 123,
3,987, 125.

* Given arbitrary numbers A,, A,, ...A,, and abase
K, what isthe overall running time of radix sort?

(extra space)

Radixsort: Complexity
How many passes?
How much work per pass?
Total time?

Conclusion?

In practice

— RadixSort only good for large number of elements with
relatively small values

— Hard on the cache compared to MergeSort/QuickSort

17

What data types can you RadixSort?

¢ Any type T that can be BucketSorted

¢ Any type T that can be broken into parts A and
B such that

—You can reconstruct T from A and B

— A can be RadixSorted

— B can be RadixSorted

— A isalways more significant than B, in ordering




RadixSorting Numbers

* 1-digit numbers can be BucketSorted

* 2to 5-digit numbers can be BucketSorted
without using too much memory

« 6-digit numbers, broken up into A=first 3 digits,
B=last 3 digits, can be RadixSorted
— A and B can reconstruct original 6-digits
— A and B are both RadixSortable as above
— A aways more significant than B

RadixSorting Strings

« 1 character can be BucketSorted
» A few characters can be BucketSorted

¢ Break |larger strings into characters or groups of
characters

— eg. break namesinto last name, first name;
sort on first name, then sort (stably) on last name

To Do

» Keep working on Project #3
* Finish reading Chapter 7
(don't spend too much time on External Sorting)




