
1

CSE 326: Data Structures

Topic 12:
Comparison-based Sorting

Ashish Sabharwal

Autumn, 2003

2

Sorting: The Big Picture

Given n Compar abl e elements in an array, sort
them in an increasing (or decreasing) order.

Simple
algorithms:

Θ(n2)

Fancier
algorithms:
Θ(n log n)

Comparison
lower bound:

Ω(n log n)

Specialized
algorithms:

Θ(n)

Handling
huge data

sets

Insertion sort
Selection sort
Bubble sort
Shell sort
…

Heap sort
AVL sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

3

Insertion Sort: Idea

• At the kth step, put the kth input element in the
correct place among the first k elements

• Result: After the kth step, the first k elements
are sorted.

Runtime:
worst case :
best case :
average case :

4

Selection Sort: idea

• Find the smallest element, put it 1st

• Find the next smallest element, put it 2nd

• Find the next smallest, put it 3rd

• And so on …

5

Selection Sort: Code
voi d SelectionSort (Array a[0..n-1]) {

for (i=0, i<n; ++i) {
j = Find index of smallest entry in a[i..n-1]
Swap(a[i],a[j])

}

while (other people are coding QuickSort/MergeSort)
{

Twiddle thumbs
}

}

Runtime:
worst case :
best case :
average case : 6

HeapSort:
Using Priority Q ADT (heap)

756

27

18
801

35

13

23 44
87

8 13 18 23 27

Shove all elements into a priority queue,
take them out smallest to largest.

Runtime:

2

7

AVL Sort

Runtime:

Would the simpler “ Splay sor t” take any longer than this?

8

Merge Sort MergeSort (Array [1..n])

1. Split Array in half
2. Recursively sort each half
3. Merge two halves together

Merge (a1[1..n],a2[1..n])

i1=1, i2=1
Whi l e (i1<n, i2<n) {

i f (a1[i1] < a2[i2]) {
Next is a1[i1]
i1++

} el se {
Next is a2[i2]
i2++

}
}
Now t hr ow i n t he dr egs…

“ The 2-pointer method”

9

Merge Sort: Complexity

10

Quick Sort

28

15 47<<<< <<<<

<<<< <<<<

<<<< <<<<

1. Pick a “pivot”
2. Divide into less-than & greater-than pivot
3. Sort each side recursively

Picture from PhotoDisc.com

11

Quick Sort Example

6953827

12

QuickSort:
Best case complexity

3

13

QuickSort:
Worst case complexity

14

QuickSort:
Average case complexity

Turns out to be Θ(n log n)

See Section 7.7.5 for an idea of the proof.
Don’ t need to know proof details for this course.

15

Dealing with Slow Quick Sorts

• Step 0: Randomly permute given input!!
– Bad cases more common than simple probability would

suggest. So, make it truly random.

• Pick pivot cleverly
– “Median-of-3” rule: pivot = Median(first, middle, last)

• Pick pivot randomly!

With good choices, fastest in practice!!

16

Quick Select

What if we want to find the kth smallest
element in an array?

Say, k = n/2 (i.e., we want to find the
median)?

17

QuickSelect (Array A, int k)

6953827Pick pivot:

Partition array:

• k = pindex?

• k < pindex?

• k > pindex?

897362 75

1 2 3 4 5 6 7

1 2 3 4 5 6 7

pindex

Runtime: 18

To Do

• Work on Project 3

• Read Chapter 7

