CSE 326: Data Structures

Topic 12
Comparison-based Sorting

Ashish Sabharwal
Autumn, 2003

Sorting: The Big Picture

Given n conpar abl e elementsin an array, sort
them in an increasing (or decreasing) order.

Simple Fancier Comparison Specidlized Handling
algorithms: agorithms: lower bound: ~ algorithms: huge data
O(n?) O(nlog n) Q(nlog n) O(n) sets
Insertion sort Heap sort Bucket sort External
Selection sort AVL sort Radix sort sorting

Bubble sort Merge sort

Shell sort Quick sort

Insertion Sort: |dea

» At the k" step, put the ki input element in the
correct place among the first k elements

» Result: After the ki step, the first k elements
are sorted.

Runtime:
worst case
best case
averagecase

Selection Sort: idea

 Find the smallest element, put it 1%

« Find the next smallest element, put it 2"
* Find the next smallest, put it 3¢

e Andsoon...

Selection Sort: Code

void SelectionSort (Array a[0..n-1]) {
for (i=0, i<n; ++i) {
j = Find index of snmallest entry in a[i..n-1]
) Swap(ali],a[j])

whil e (other people are coding Qui ckSort/MergeSort)
{

}

Twi ddl e t hunbs

Runtime:
worst case
best case

averagecase 5

HeapSort:
Using Priority Q ADT (heap)

13 18
801 5,

SBS 13 18 23 27

Shove all elementsinto apriority queue,
take them out smallest to largest.

Runtime:

AVL Sort

Runtime:

Would the simpler “ Splay sort” take any longer than this?

Merge Sort: Complexity

Quick Sort Example
2 [s [3 [5 [0 [6 |

i 1++
} else {
Next is a2[iZ2]
i2++
* The 2-pointer method” }
Now throw in the dregs... 8

Mer geSOI' t (Array [1..n])
1. Split Array in half

2. Recursively sort each hal f
3. Merge two hal ves toget her

Mer ge (ai[1..n],a2[1..n])

il=1, i2=1

Wi le (il<n, i2<n) {

if (allil] < a2[i2]) {
Next is all[i1l]

Quick Sort

)

wre fom Petediss com

D) D@0

1. Pick a“pivot”
2. Divideinto less-than & greater-than pivot

3. Sort each siderecursively
10

QuickSort:
Best case complexity AB.

QuickSort:

J Worst case complexity a

QuickSort:
i Average case complexity A8

Turns out to be ©(n log n)

See Section 7.7.5 for an idea of the proof.
Don’t need to know proof details for this course.

14

Dealing with Slow Quick Sorts

* Step 0: Randomly permute given input!!
— Bad cases more common than simple probability would
suggest. So, make it truly random.

* Pick pivot cleverly
— “Median-of-3" rule: pivot = Median(first, middle, last)

 Pick pivot randomly!

With good choices, fastest in practice!!

Quick Select

What if we want to find the k" smallest
element in an array?

Say, k=n/2 (i.e.,, we want to find the
median)?

16

QuickSelect (Array A, int k)

1 2 3 4 5 6 7
Pick pivot: .2 ‘8 ‘3 ‘5 ‘9 ‘6 |
1 2 3 4 5 6 7

Partitionarray:|5 ‘2 ‘6 ‘3 .9 ‘8 |

pindex

o k=pindex?
¢ k< pindex?

e k> pindex?

Runtime:

ToDo

« Work on Project 3
« Read Chapter 7

18

