CSE 326: Data Structures
Topic#11: Digoint Set ADT (2)

Ashish Sabharwal
Autumn, 2003

Improving Union

© é Could we do a better
@ O job on this union?

@@
@

Union-by-size: Code

int Union(int x, int y) {
/1 1f up[x] and up[y] aren’t both
/1 -1, this algorithmis in trouble

if (size[x] > size[y]) {

uplyl = x;

size[x] += size[y];
} new runtime for Union():
else {

up[x] =y;

size[y] += size[Xx];
} new runtime for Find():

}

Union-by-size: Find Analysis
» Complexity of Find: ®(max node depth)

* All nodes start at depth O
» Node depth increases
— Only when it is part of smaller treein aunion
— Only by onelevel at atime
Result: tree size doubles when node depth increases by 1

Find runtime = @(node depth) =

runtime for mfinds and n-1 unions =

Nifty Storage Trick

« Use the same array representation as before

* Instead of storing -1 for the root,
simply store —si ze

[Read section 8.4, page 276]

How about Union-by-height?
« Can still guarantee ®(log n) worst case depth

Left as an exercise!
(will probably appear in Homework #3)

* Problem: Union-by-height doesn’'t combine very well
with the new find optimization technique we' Il see next

Improving Find

ééééé

Whilewe refinding f,
could we do anything else?

Hint: think splay trees...

Path Compression: Code

int Find(Ohject x) {

/1 Change the parent for
Il x had better be in

/1 all nodes along the path

Il the set! while(up[i] '=-1) {
int xID = hTabl e[x]; tenp = up[i];
int i =xID up[i] = xID;

i = tenp;
/1 Get the root for }
/Il this set return x| D;
while(up[xID !'=-1) { }

xID = up[xID];
}

(New?) runtime for Find:

Path Compression!

find(e) Recall: it need not be

Q
e L d
OO

Interlude: A Really Slow Function

Ackermann’s function isareally big function A(x, y)
with inverse a(x, y) which isreally small

How fast does a(x, y) grow?

a(x, y) =4for x far larger than the number of atoms
in the universe (23%)

o shows upin:

— Computation Geometry (surface complexity)
— Combinatorics of sequences

A More Comprehensible
Slow Function

log* x = number of timesyou need to compute
log to bring value down to at most 1

Eg.logr2=1
log* 4=log* 22=2
log* 16 = log* 222=3 (loglog log 16 = 1)

log* 65536 = log* 2222 = 4 (loglog log log 65536 = 1)
log* 265536 = -

Takethis: a(m,n) grows even slower than log* n !

10

Complex Complexity of
Union-by-Size + Path Compression
Tarjan proved that, with these optimizations, p union and

find operations on a set of n elements have worst case
complexity of O(p Cx(p, n))

For all practical purposesthisis amortized constant time:
O(p %) for p operations!

* Very complex analysis—worse than splay tree analysis
etc. that we skipped!

» Tarjanisalso the (very smart) splay tree guy

12

