
1

CSE 326: Data Structures

Topic #10: Hashing (3)

Ashish Sabharwal

Autumn, 2003

2

Today’s Outline

• Admin:
– Hardcopy turnin for Project 2 – now!

– Homework 2 due Friday

– Start looking for a partner for Project 3
(must be someone different from your Project 2 partner)

• Finish Hashing
– Double hashing, rehashing

– Extendible hashing

• Group Quiz #4

3

When to Rehash?

Many alternatives:

• Rehash when table is half full

• Rehash when insertion fails in open addressing

• Rehash when insertion becomes very slow
in separate chaining

• Rehash when λ crosses a certain threshold

4

Something We Again Forgot:
Disk Acesses

5

We Want To Minimize Disk Accesses!

1024 bytes

• Entire blocks transferred
into memory at a time

• Transfer time much less
than seek time

• Therefore we need to
minimize disk accesses!

Disk access time =
Seek time

+
Transfer time

6

Solution: Extendible Hashing

Hashing technique for huge data sets
– Optimizes to reduce disk accesses

Hash “ table” contains
1. Directory

2D entries, D bits per entry, pointers to leaf buckets
2. Leaf Buckets

Keys in leaf L have dL ≤ D bits in common with parent key,
leaves store all data

Properties
– Only 2 levels in the table – only 2 disk accesses for find!
– Each leaf bucket fits on one disk block – caching
– Better than B-Trees if order is not important – why?

2

7

001 010 011 110 111101

Extendible Hash Table
Directory entry : key prefix (first D bits) and a pointer to the bucket

with all keys starting with that prefix
Bucket entry : keys matching on first dL ≤ D bits, plus the data

associated with those keys

000 100

(dL = 2)
00001
00011
00100
00110

(dL = 2)
01001
01011
01100

(dL = 3)
10001
10011

(dL = 3)
10101
10110
10111

(dL = 2)
11001
11100
11110

Directory for D = 3

insert(11010)?

insert(11011)?

+ data
+ data
+ data
+ data

Bucket size = 4

8

001 010 011 110 111101

Inserting Using Bucket-Split

000 100

(dL = 2)
00001
00011
00100
00110

(dL = 2)
01001
01011
01100

(dL = 3)
10001
10011

(dL = 3)
10101
10110
10111

(dL = 3)
11001
11010
11011

Directory for D = 3

+ data
+ data
+ data
+ data

Bucket size = 4

(dL = 3)
11100
11110

Split

9

Insertion Using Directory-Expansion

1. insert(10010)
But, no room to insert,
only one parent,
and no adoption!

2. Solution:
Expand directory
Now do a bucket-split

01 10 1100

(2)
01101

(2)
10000
10001
10011
10111

(2)
11001
11110

001 010 011 110 111101000 100

More expensive!

How to ensure this is uncommon?

D = 2

D = 3

10

What if Extendible Hashing
Doesn’ t Cut It?

Option 1: Store only pointers/references to the items:
(key, value) pairs separately on disk

Option 2: Improve hash function; Rehash

11

The One-Slide Hash

Collision resolution

1. Separate Chaining
– Expand beyond hashtable via

secondary Dictionaries

– Allows λ > 1

2. Open Addressing
– Expand within hashtable

– Secondary probing: { linear,
quadratic, double hash}

– λ ≤ 1 (by definition!)

– λ ≤ ½ (by preference!)

Choosing a Hash Function

• Make sure table size is prime

• Careful choice for strings

• “ Perfect hashing”
– If keys known in advance, tune

hash function for them!

Rehashing

• Tunes up hashtablewhen, e.g.,
λ crosses a threshold

Extendible hashing
• For disk-based data

Hash function: maps keys to integers

12

Search ADT Implementations

• Unsorted list
�

(1)
�

(n)
�

(n)

• Sorted list
�

(n)
�

(log n)?
�

(n)

• Trees
�

(log n)
�

(log n)
�

(log n)

• Hash Table
�

(1)
�

(1)
�

(1)

insert deletefind

Is there anything a hash table cannot do efficiently?

(average case)

You’ ll answer this in quiz #4!

