CSE 326: Data Structures
Topic #10: Hashing (3)

Ashish Sabharwal
Autumn, 2003

Today’ s Outline

e Admin:
— Hardcopy turnin for Project 2 — now!
— Homework 2 due Friday

— Start looking for a partner for Project 3
(must be someone different from your Project 2 partner)

¢ Finish Hashing
— Double hashing, rehashing
— Extendible hashing

e Group Quiz#4

When to Rehash?

Many alternatives:
* Rehash when tableis half full

» Rehash when insertion failsin open addressing

* Rehash when insertion becomes very slow
in separate chaining

» Rehash when A crosses a certain threshold

Something We Again Forgot:

Disk Acesses
Andromeda
109 Tape /Optical = 2,000 Years
Robot
106 Disk Pluta 2 Years
100 Mermory sty

10 On Board Cache 10 min
2 On Chip Cache Fedanibig 1
1 Registers 7 My Head 1 min

WeWant To Minimize Disk Accesses!

3

1024 bytes

« Entire blocks transferred
L into memory a atime
* Transfer time much less

Disk accesstime =

Seek time [than seek time
+ — * Therefore we need to
Transfer time minimize disk accesses!

Solution: Extendible Hashing

Hashing technique for huge data sets
— Optimizesto reduce disk accesses

Hash “table” contains
1. Directory
20 entries, D bits per entry, pointers to leaf buckets
2. Leaf Buckets
Keysin leaf L have d, < D bitsin common with parent key,
leaves store all data

Properties
— Only 2 levelsin the table — only 2 disk accesses for find!
— Each leaf bucket fits on one disk block — caching

— Better than B-Trees if order is not important — why?

Extendible Hash Table

Directory entry : key prefix (first D bits) and a pointer to the bucket
with al keys starting with that prefix

keys matching on first d_ < D bits, plus the data
associated with those keys

Bucket entry

Directory for D =3
‘ 000 ‘ 001 ‘ 010 ‘ 011 100‘ 101‘ 110‘ 111‘

= _— 1]

(d.=2 (d.=2 d.=3) (d. =3 d =2
00001 + fata 01001 10001 10101 11001
00011 + fata 01011 10011 10110 11100
00100 + data 01100 10111 11110
00110 + data

insert(11010)? Bucket size=4
insert(11011)?

Inserting Using Bucket-Split

Directory for D =3

‘ 000 ‘ 001 | 010 ‘ 011 ‘ 100 ‘ 101 ‘ 110 ‘ 111 ‘

(dL =2) (dL =2) (dL =3) (dL =3) (dL =3) (dL =3)
00001+ fata | 01001 10001 10101 11001 11100
00011+ fata | 01011 10011 10110 11010 11110
00100 +gdata | 01100 10111 11011
00110 + data

Bucket size=4 Split

Insertion Using Directory-Expansion

1. insert(10010) D=2

But, no room to insert,
(o [alu]a]

only one parent,

and no adoption!
. (2) (2
2. Solution: 01101 11001
Expand directory 11110

Now do a bucket-split

‘000‘001‘010‘011‘ 10(# 101‘ 110‘ 11].‘

More expensive! D=3

How to ensurethisis uncommon?

What if Extendible Hashing
Doesn't Cut It?

Option 1: Store only pointers/referencesto the items:
(key, value) pairs separately on disk

Option 2: Improve hash function; Rehash

The One-Slide Hash

Hash function: maps keys to integers

Collision resolution Choosing a Hash Function

1. Separate Chaining « Makesuretablesizeis prime

— Expand beyond hashtable via « Careful choice for strings
secondary Dictionaries « Perfect hashing”
~ AllowsA>1 e 'ng

— If keys known in advance, tune
hash function for them!
Rehashing
« Tunes up hashtable when, e.g.,
A crosses athreshold
Extendible hashing
« For disk-based data

2. Open Addressing
— Expand within hashtable
— Secondary probing: {linear,
quadratic, double hash}
— A <1(by definitiont)
— A <Y%(by preference!)

11

Search ADT Implementations

insert find delete
e Unsorted list ~ ©(1) o(n) o(n)
» Sorted list O(n) O(logn)? ©(n)
* Trees O(logn) ©(ogn) BO(log n)
» Hash Table 01 01 01
(average case)

Is there anything a hash table cannot do efficiently?

You'll answer thisin quiz #4!

