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Topic #8: Big, Bad B-Trees
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Today’s Outline

• Admin:
– Project 2, Phase B code will be ready by 6:00 pm tonight

– Due next Monday! 

– “ In-progress”  checking due this Wed night

– Remember: README constitutes 30% of project grade

– Use class email list – ask, answer, share knowledge!

• Finish talking about project 2

• B-Trees
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Something We Forgot: Disk Acesses
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We Want To Minimize Disk Accesses!

1024 bytes

• Entire blocks transferred 
into memory at a time

• Transfer time much less
than seek time

• Therefore we need to 
minimize disk accesses!

Disk access time =
Seek time

+
Transfer time
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M-ary Search Tree

• Maximum branching 
factor of M

• Complete tree has 
height = 

# disk accesses for find:

Runtime of find:
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M-ary Search Tree

Subject GRE analogy question:

M-ary Trees are to AVL Trees
as _____________ are to _____________

• Same motivation

• Same idea

• But …
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Problems with M-ary Search Trees

1.

2.

3.
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Solution: B-Trees
• B-Trees are specialized M-ary search trees

• Each node has many keys (max M-1)

– subtreebetween two keys x and y contains
leaves with valuesv such that
x ≤ v < y 

– binary search within a node 

to find correct subtree

• Each node takes one 

full { page, block}  

of memory

3 7 1221

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x

So what’ s new here??
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B-Trees

What makes them disk-friendly?

1. Many keys stored in a node
• All brought to memory/cache in one access!

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data
• The tree structure can be loaded into memory

irrespective of data object size

• Data actually resides in disk
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B-Tree: Example

B-Tree with M = 4 (# pointers in internal node)

and L = 4 (# data items in leaf)

1
AB

2
xG 3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

1040

3 152030 50

Note: All leaves at the same depth!Data objects, that I’ ll 
ignore in slides
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B-Tree Properties (1) ‡

– maximum branching factor of M

– the root has between 2 and M children or at most L data items

– other internal nodes have between �M/2� and M children

– internal nodes contain only search keys (no data)

– All values are stored at the leaves

– smallest datum between search keys x and y equals x

– each (non-root) leaf contains between �L/2� and L data items

– all leaves are at the same depth

‡These are technically B+-Trees 12

B-Tree Properties (2)

– maximum branching factor of M

– the root has between 2 and M children or at most L data items

– other internal nodes have between �M/2� and M children

– internal nodes contain only search keys (no data objects)

– All data stored at the leaves

– smallest datum between search keys x and y equals x

– each (non-root) leaf contains between �L/2� and L data items

– all leaves are at the same depth
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B-Tree Properties (3)

– maximum branching factor of M

– the root has between 2 and M children or at most L data items

– other internal nodes have between �M/2� and M children

– internal nodes contain only search keys (no data)

– All values are stored at the leaves

– smallest datum between search keys x and y equals x
– each (non-root) leaf contains between �L/2� and L data items

– all leaves are at the same depth
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B-Tree Properties (4)

– maximum branching factor of M

– the root has between 2 and M children or at most L data items

– other internal nodes have between �M/2� and M children

– internal nodes contain only search keys (no data)

– All values are stored at the leaves

– smallest datum between search keys x and y equals x

– each (non-root) leaf contains between �L/2� and L data items

– all leaves are at the same depth

Result
– tree is ΘΘΘΘ( l ogM n) deep

– all operations run in ΘΘΘΘ( l ogM n) time

– operations pull in about M/ 2 or L/ 2 items at a time
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…__ __k1 k2
… k i

B-Tree Nodes
Internal nodes

i search keys; i +1 subtrees; M - i  - 1 inactive entries

Leaf nodes
j values; L - j inactive entries

k1 k2
… k j

…__ __

1 2 M - 1

1 2 L

i

j
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Example, Again

B-Tree with M = 4

and L = 4

1 2

3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

1040

3 152030 50

(Only showing keys, but leaves also have data!)
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B-trees vs. AVL trees

Suppose we have a database* with
100 million items (100,000,000):

• Depth of AVL Tree

• Depth of B+ Tree with M = 128, L = 64

*  A very simple type of database, called 
“ Berkeley Database”  is basically a B+-tree 18

Building a B-Tree

The empty 
B-Tree

M = 3 L = 2

3
Insert(3)

3 14
Insert(14)

Now, Insert(1)?
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Splitting the Root

And create
a new root

1 3 14

1 3 14

14

1 3 14
3 14

Insert(1)

Too many 
keys in a leaf!

So, split the leaf.
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Insertions and Split Ends

Insert(59)

14

1 3 14 59

14

1 3 14

Insert(26)

14

1 3 14 26 59

14 26 59

1459

1 3 14 26 59

And add 
a new child

Too many 
keys in a leaf!

So, split the leaf.
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Propagating Splits

1459

1 3 14 26 59

1459

1 3 14 26 595

1 3 5

Insert(5)

5 14

14 26 591 3 5

59

5 595

1 3 5 14 26 59

59

14

Add new
child

Create a
new root

Too many keys in an internal node!

So, split the node.
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Insertion in Boring Text

1. Insert the key in its leaf

2. If the leaf ends up with L+1 
items, overflow!
– Split the leaf into two nodes:

• original with     ����( L+1) / 2���� items

• new one with ����( L+1) / 2���� items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

3. If an internal node ends up 
with M+1 items, overflow!
– Split the node into two nodes:

• original with     ����( M+1) / 2���� items

• new one with ����( M+1) / 2���� items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

4. Split an overflowed root in two 
and hang the new nodes under 
a new root

This makes the tree deeper!
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After More Routine Inserts

5

1 3 5 14 26 59

59

14

5

1 3 5 14 26 59 79

5989

14

89

Insert(89)
Insert(79)
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Deletion

5

1 3 5 14 26 59 79

5989

14

89

5

1 3 5 14 26 79

79 89

14

89

Delete(59)

What could go wrong?

1. Delete item from leaf
2. Update keys of ancestors if necessary



5

25

Deletion and Adoption

5

1 3 5 14 26 79

7989

14

89

Delete(5)
?

1 3 14 26 79

7989

14

89

3

1 3 3 14 26 79

7989

14

89

A leaf has too few keys!

So, borrow from a neighbor
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Deletion and Merging

• What if the neighbor doesn’ t have enough for you 
to borrow from?

e.g. you have �M/2�-1 and he has �M/2� ?
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Deletion and Merging

3

1 3 14 26 79

7989

14

89

Delete(3)
?

1 14 26 79

7989

14

89

1 14 26 79

7989

14

89

A leaf has too few keys!

And no neighbor with surplus!

So, delete
the leaf

But now an internal node 
has too few subtrees!
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Adopt a
neighbor

1 14 26 79

7989

14

89

14

1 14 26 79

89

79

89

Deletion with Propagation 
(More Adoption)

29

Delete(1)
(adopt a

neighbor)

14

1 14 26 79

89

79

89

A Bit More Adoption

26

14 26 79

89

79

89
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Delete(26)
26

14 26 79

89

79

89

Pulling out the Root

14 79

89

79

89

A leaf has too few keys!
And no neighbor with surplus!

14 79

89

79

89

So, delete 
the leaf;
merge

A node has too few subtrees
and no neighbor with surplus!

14 79

7989

89

Delete 
the node

But now the root
has just one subtree!
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Pulling out the Root (continued)

14 79

7989

89

The root
has just one subtree!

But that’s silly!

14 79

7989

89

Simply make
the one child
the new root!
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Deletion in Two
Boring Slides of Text

1. Remove the key from its leaf

2. If the leaf ends up with fewer 
than ����L/ 2���� items, underflow!
– Adopt data from a neighbor; 

update the parent

– If adopting won’ t work, delete 
node and merge with neighbor

– If the parent ends up with 
fewer than ����M/ 2���� items, 
underflow!

Why will merging always 
work if adopting doesn’ t?
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Deletion Slide Two

3. If an internal node ends up with 
fewer than ����M/ 2���� items, underflow!
– Adopt from a neighbor;

update the parent

– If adoption won’ t work,
merge with neighbor

– If the parent ends up with fewer than 
����M/ 2���� items, underflow!

4. If the root ends up with only one 
child, make the child the new root 
of the tree

This reduces the 
height of the tree!
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Thinking about B-Trees

• B-Tree insertion can cause (expensive) splitting 
and propagation

• B-Tree deletion can cause (cheap) adoption or 
(expensive) deletion, merging and propagation

• Propagation is rare if M and L are large   
(Why?)

• Repeated insertions and deletion can cause 
thrashing

• If M = L = 128, then a B-Tree of height 4 will 
store at least 30,000,000 items
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Tree Names You Might Encounter

FYI:
– B-Trees with M = 3, L = x are called 2-3 trees

• Nodes can have 2 or 3 keys

– B-Trees with M = 4, L = x are called 2-3-4 trees
• Nodes can have 2, 3, or 4 keys

Why would we ever use these?
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To Do

• Work on Project #2

• Finish reading Chapter 4

• Start reading Chapter 5


