
1

CSE 326: Data Structures

Topic #8: Big, Bad B-Trees

Ashish Sabharwal

Autumn, 2003

2

Today’s Outline

• Admin:
– Project 2, Phase B code will be ready by 6:00 pm tonight

– Due next Monday!

– “ In-progress” checking due this Wed night

– Remember: README constitutes 30% of project grade

– Use class email list – ask, answer, share knowledge!

• Finish talking about project 2

• B-Trees

3

Something We Forgot: Disk Acesses

4

We Want To Minimize Disk Accesses!

1024 bytes

• Entire blocks transferred
into memory at a time

• Transfer time much less
than seek time

• Therefore we need to
minimize disk accesses!

Disk access time =
Seek time

+
Transfer time

5

M-ary Search Tree

• Maximum branching
factor of M

• Complete tree has
height =

disk accesses for find:

Runtime of find:

6

M-ary Search Tree

Subject GRE analogy question:

M-ary Trees are to AVL Trees
as _____________ are to _____________

• Same motivation

• Same idea

• But …

2

7

Problems with M-ary Search Trees

1.

2.

3.

8

Solution: B-Trees
• B-Trees are specialized M-ary search trees

• Each node has many keys (max M-1)

– subtreebetween two keys x and y contains
leaves with valuesv such that
x ≤ v < y

– binary search within a node

to find correct subtree

• Each node takes one

full { page, block}

of memory

3 7 1221

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x

So what’ s new here??

9

B-Trees

What makes them disk-friendly?

1. Many keys stored in a node
• All brought to memory/cache in one access!

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data
• The tree structure can be loaded into memory

irrespective of data object size

• Data actually resides in disk

10

B-Tree: Example

B-Tree with M = 4 (# pointers in internal node)

and L = 4 (# data items in leaf)

1
AB

2
xG 3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

1040

3 152030 50

Note: All leaves at the same depth!Data objects, that I’ ll
ignore in slides

11

B-Tree Properties (1) ‡

– maximum branching factor of M

– the root has between 2 and M children or at most L data items

– other internal nodes have between �M/2� and M children

– internal nodes contain only search keys (no data)

– All values are stored at the leaves

– smallest datum between search keys x and y equals x

– each (non-root) leaf contains between �L/2� and L data items

– all leaves are at the same depth

‡These are technically B+-Trees 12

B-Tree Properties (2)

– maximum branching factor of M

– the root has between 2 and M children or at most L data items

– other internal nodes have between �M/2� and M children

– internal nodes contain only search keys (no data objects)

– All data stored at the leaves

– smallest datum between search keys x and y equals x

– each (non-root) leaf contains between �L/2� and L data items

– all leaves are at the same depth

3

13

B-Tree Properties (3)

– maximum branching factor of M

– the root has between 2 and M children or at most L data items

– other internal nodes have between �M/2� and M children

– internal nodes contain only search keys (no data)

– All values are stored at the leaves

– smallest datum between search keys x and y equals x
– each (non-root) leaf contains between �L/2� and L data items

– all leaves are at the same depth

14

B-Tree Properties (4)

– maximum branching factor of M

– the root has between 2 and M children or at most L data items

– other internal nodes have between �M/2� and M children

– internal nodes contain only search keys (no data)

– All values are stored at the leaves

– smallest datum between search keys x and y equals x

– each (non-root) leaf contains between �L/2� and L data items

– all leaves are at the same depth

Result
– tree is ΘΘΘΘ(l ogM n) deep

– all operations run in ΘΘΘΘ(l ogM n) time

– operations pull in about M/ 2 or L/ 2 items at a time

15

…__ __k1 k2
… k i

B-Tree Nodes
Internal nodes

i search keys; i +1 subtrees; M - i - 1 inactive entries

Leaf nodes
j values; L - j inactive entries

k1 k2
… k j

…__ __

1 2 M - 1

1 2 L

i

j
16

Example, Again

B-Tree with M = 4

and L = 4

1 2

3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

1040

3 152030 50

(Only showing keys, but leaves also have data!)

17

B-trees vs. AVL trees

Suppose we have a database* with
100 million items (100,000,000):

• Depth of AVL Tree

• Depth of B+ Tree with M = 128, L = 64

* A very simple type of database, called
“ Berkeley Database” is basically a B+-tree 18

Building a B-Tree

The empty
B-Tree

M = 3 L = 2

3
Insert(3)

3 14
Insert(14)

Now, Insert(1)?

4

19

Splitting the Root

And create
a new root

1 3 14

1 3 14

14

1 3 14
3 14

Insert(1)

Too many
keys in a leaf!

So, split the leaf.

20

Insertions and Split Ends

Insert(59)

14

1 3 14 59

14

1 3 14

Insert(26)

14

1 3 14 26 59

14 26 59

1459

1 3 14 26 59

And add
a new child

Too many
keys in a leaf!

So, split the leaf.

21

Propagating Splits

1459

1 3 14 26 59

1459

1 3 14 26 595

1 3 5

Insert(5)

5 14

14 26 591 3 5

59

5 595

1 3 5 14 26 59

59

14

Add new
child

Create a
new root

Too many keys in an internal node!

So, split the node.
22

Insertion in Boring Text

1. Insert the key in its leaf

2. If the leaf ends up with L+1
items, overflow!
– Split the leaf into two nodes:

• original with ����(L+1) / 2���� items

• new one with ����(L+1) / 2���� items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

3. If an internal node ends up
with M+1 items, overflow!
– Split the node into two nodes:

• original with ����(M+1) / 2���� items

• new one with ����(M+1) / 2���� items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

4. Split an overflowed root in two
and hang the new nodes under
a new root

This makes the tree deeper!

23

After More Routine Inserts

5

1 3 5 14 26 59

59

14

5

1 3 5 14 26 59 79

5989

14

89

Insert(89)
Insert(79)

24

Deletion

5

1 3 5 14 26 59 79

5989

14

89

5

1 3 5 14 26 79

79 89

14

89

Delete(59)

What could go wrong?

1. Delete item from leaf
2. Update keys of ancestors if necessary

5

25

Deletion and Adoption

5

1 3 5 14 26 79

7989

14

89

Delete(5)
?

1 3 14 26 79

7989

14

89

3

1 3 3 14 26 79

7989

14

89

A leaf has too few keys!

So, borrow from a neighbor

26

Deletion and Merging

• What if the neighbor doesn’ t have enough for you
to borrow from?

e.g. you have �M/2�-1 and he has �M/2� ?

27

Deletion and Merging

3

1 3 14 26 79

7989

14

89

Delete(3)
?

1 14 26 79

7989

14

89

1 14 26 79

7989

14

89

A leaf has too few keys!

And no neighbor with surplus!

So, delete
the leaf

But now an internal node
has too few subtrees!

28

Adopt a
neighbor

1 14 26 79

7989

14

89

14

1 14 26 79

89

79

89

Deletion with Propagation
(More Adoption)

29

Delete(1)
(adopt a

neighbor)

14

1 14 26 79

89

79

89

A Bit More Adoption

26

14 26 79

89

79

89

30

Delete(26)
26

14 26 79

89

79

89

Pulling out the Root

14 79

89

79

89

A leaf has too few keys!
And no neighbor with surplus!

14 79

89

79

89

So, delete
the leaf;
merge

A node has too few subtrees
and no neighbor with surplus!

14 79

7989

89

Delete
the node

But now the root
has just one subtree!

6

31

Pulling out the Root (continued)

14 79

7989

89

The root
has just one subtree!

But that’s silly!

14 79

7989

89

Simply make
the one child
the new root!

32

Deletion in Two
Boring Slides of Text

1. Remove the key from its leaf

2. If the leaf ends up with fewer
than ����L/ 2���� items, underflow!
– Adopt data from a neighbor;

update the parent

– If adopting won’ t work, delete
node and merge with neighbor

– If the parent ends up with
fewer than ����M/ 2���� items,
underflow!

Why will merging always
work if adopting doesn’ t?

33

Deletion Slide Two

3. If an internal node ends up with
fewer than ����M/ 2���� items, underflow!
– Adopt from a neighbor;

update the parent

– If adoption won’ t work,
merge with neighbor

– If the parent ends up with fewer than
����M/ 2���� items, underflow!

4. If the root ends up with only one
child, make the child the new root
of the tree

This reduces the
height of the tree!

34

Thinking about B-Trees

• B-Tree insertion can cause (expensive) splitting
and propagation

• B-Tree deletion can cause (cheap) adoption or
(expensive) deletion, merging and propagation

• Propagation is rare if M and L are large
(Why?)

• Repeated insertions and deletion can cause
thrashing

• If M = L = 128, then a B-Tree of height 4 will
store at least 30,000,000 items

35

Tree Names You Might Encounter

FYI:
– B-Trees with M = 3, L = x are called 2-3 trees

• Nodes can have 2 or 3 keys

– B-Trees with M = 4, L = x are called 2-3-4 trees
• Nodes can have 2, 3, or 4 keys

Why would we ever use these?

36

To Do

• Work on Project #2

• Finish reading Chapter 4

• Start reading Chapter 5

