CSE 326: Data Structures

% Topic #8: Big, Bad B-Trees

a} a} a} Ashish Sabharwal

Autumn, 2003

Today’ s Outline

e Admin:
— Project 2, Phase B code will be ready by 6:00 pm tonight
— Due next Monday!
— “In-progress’ checking due this Wed night

— Remember: README constitutes 30% of project grade

— Useclass email list — ask, answer, share knowledge!

* Finish talking about project 2
* B-Trees)

Something We Forgot: Disk Acesses

Andromeda
10 g Tape /Optical = 2 000 Years
Robaot
106 Disk Pluto 2 Years
100 Memory st

10 On Board Cache 10 min
2 OnChip Cache s 1
1 Registers T My Head 1 min

WeWant To Minimize Disk Accesses!

— (

1024 bytes

] « Entire blocks transferred
[into memory at atime
Disk access time = « Transfer time much less
Seek time [than seek time
« Therefore we need to
minimize disk a:c!

+ L
Transfer time

M-ary Search Tree

» Maximum branching

factor of M @
» Completetree has

height =

disk accesses for find:

Runtime of find:

M-ary Search Tree

Subject GRE analogy question:

M-ary Treesareto AVL Trees
as areto

e Same motivation
e Sameidea
e But ...

Problems with M-ary Search Trees

Solution; B-Trees

* B-Trees are specialized M-ary search trees

» Each node has many keys (max M-1)

— subtree between two keys x and y contains
leaves with values v such that
XSv<y

— binary search within anode
to find correct subtree

» Each node takes one
full { page, block}
of memory

Sowhat'snew here?? °

1.
2.
3.
7
B-Trees
What makes them disk-friendly?

1. Many keysstored in anode
¢ All brought to memory/cache in one access!

2. Internal nodes contain only keys;
Only leaf nodes contain keysand actual data

¢ Thetree structure can be loaded into memory
irrespective of data object size
« Dataactualy residesin disk

B-Tree: Example

B-TreewithM = 4 (# pointersin internal node)
andL = 4 (# dataitems in leaf)

';“\101111121 | [20[2526]] [ada2 T]
[s[elo] [ws17 [| [30[3233[3¢] [5060[70]]

\
Data objects, that I'll

Note: All leaves at the same depth!
ignore in slides

B-Tree Properties (1) #

— maximum branching factor of M

— theroot has between 2 and Mchildren or at most L dataitems
— other internal nodes have between [M/2] and M children

— internal nodes contain only search keys (no data)

— All values are stored at the leaves

— smallest datum between search keys x and y equals x

— each (non-root) leaf contains between[L/2]and L dataitems
— al leaves are at the same depth

These are technically B-Trees o

B-Tree Properties (2)

— maximum branching factor of M

— theroot has between 2 and M children or at most L data items
— other internal nodes have between[M/2 1 and Mchildren

— internal nodes contain only search keys (no data objects)

— All data stored at the leaves

— smallest datum between search keys x and y equals x

— each (non-root) leaf contains between[L/2]and L dataitems
— al leaves are at the same depth

12

B-Tree Properties (3)

— maximum branching factor of M

— theroot has between 2 and M children or at most L dataitems
— other internal nodes have between [M/2] and M children

— internal nodes contain only search keys (no data)

— All values are stored at the leaves

— smallest datum between search keys x and y equals x

— each (non-root) leaf contains between[L/2]and L dataitems
— al leaves are at the same depth

13

B-Tree Properties (4)

— maximum branching factor of M
— the root has between 2 and M children or at most L dataitems
— other internal nodes have between| M/21and M children
— internal nodes contain only search keys (no data)
— All values are stored at the leaves
— smallest datum between search keys x and y equals x
— each (non-root) leaf contains between [L/2] and L dataitems
— dl leaves are at the same depth
Result
— treeis©(| ogy n) deep
— all operationsrunin ©(| og,, n) time
— operationspull in about M 2 or L/ 2_itemsat atime

14

B-Tree Nodes

Internal nodes

i searchkeys;i +1 subtrees; M - i - 1 inactiveentries
Lo e -] -][]
/1] 2 I M- 1
Leaf nodes

j vaues, L -] inactiveentries

R D) R

1 2 j L

Example, Again

B-TreewithM = 4
andL = 4

B-treesvs. AVL trees

Suppose we have a database* with
100 million items (100,000,000):

* Depth of AVL Tree

* Depth of B+ Treewith M =128, L = 64

* Avery simple type of database, called
“ Berkeley Database” isbasically a B*-tree 7

) [ada2] T]
[3]5]6]9] (527 T] [30[3233[3¢] [5060[70]]
(Only showing keys, but leaves also have datal) 6
Building aB-Tree
1] (3]]
Insert(3) Insert(14)
The empty
B-Tree
M=3L=2

Now, Insert(1)?

18

Splitting the Root

Too many
keysin aleaf!
Insert(1) And create :
anew root
So, split the leaf.

19

Propagating Splits

Insert(5)

Create a
new root

So, split the node.

After More Routine Inserts

Insert(89)
Insert(79)

Insertions and Split Ends

Too many
keysin aleaf!

Insert(59) Insert(26)

So, split the leaf.

anew child

20

Insertion in Boring Text

3. If an internal node ends up
with M+1 items, over flow!
— Split the node into two nodes:
- origina with [(M1) / 2]items
+ new onewith|(M1) / 2items
— Add the new child to the parent
— If the parent ends up with M+1
items, overflow!

1. Insertthekey initsleaf
2. If theleaf endsup with L+1
items, overflow!
— Split theleaf into two nodes:
« origina with [(L+1)/ 27items
« newonewith| (L+1)/2]items
— Add the new child to the parent
— I the parent ends up with Mr1
items, overflow!

4. Split an overflowed root in two
~ and hang the new nodes under
anew root

/
This makes the tree deeper! -

22

Deletion

1. Deleteitem from leaf
2. Update keys of ancestors if necessary

Delete(59)

BRI EEER

What could go wrong?

24

Deletion and Adoption

Delete(5)

A leaf hastoo few keys!

Deletion and Merging

* What if the neighbor doesn’t have enough for you
to borrow from?

e.g. you have[M/2]-1 and he has[M/2] ?

26

Deletion and Merging

Delete(3)

A leaf hastoo few keys!

But now an interna node
has too few subtrees!

[2[]

AEERrEEEE

And no neighbor with surplus!

So, delete

the leaf

27

Deletion with Propagation
(More Adoption)

Adopt a
neighbor

28

/
ERER

Delete(1)

(adopt a
neighbor)

Pulling out the ROOt 4 e has oo few keys

And no neighbor with surplus!

Delete(26) So, delete

26] EE- the leaf;
/ merge
2] e
But now the root A node has too few subtrees

has just one subtree! and no neighbor with surplus!

29

Delete
the node

30

Pulling out the Root (continued)

The root
hasjust one subtree!

Simply make
the one child
the new root!

ElER

Deletion in Two
Boring Slides of Text

1. Removethekey fromits leaf

2. If theleaf ends up with fewer

than[L/ 27 items, underflow!

But that's silly!

— Adopt datafrom aneighbor; ~ Why will merging always
update the parent |/~ work if adopting doesn't?
— If adopting won't work, delete
node and merge with neighbor

— If the parent ends up with
fewer than[m 27 items,

underflow!
32

Deletion Slide Two

3. If aninternal node ends up with
fewer than[M 27 items, underflow!
— Adopt from a neighbor;
update the parent
— If adoption won’t work,
merge with neighbor
— If the parent ends up with fewer than
™ 27items, under flow! This reduces the
/ height of the tree!

4./If theroot ends up with only one
child, make the child the new root
of thetree ®

Thinking about B-Trees

» B-Treeinsertion can cause (expensive) splitting
and propagation

» B-Tree deletion can cause (cheap) adoption or
(expensive) deletion, merging and propagation

» Propagationisrareif Mand L arelarge
(Why?)

» Repesated insertions and deletion can cause
thrashing

« If M= L = 128, then aB-Treeof height 4 will
store at least 30,000,000 items

Tree Names Y ou Might Encounter

FYI:
— B-TreeswithM = 3,L = x arecalled 2-3 trees
« Nodes can have 2 or 3 keys
— B-TreeswithM = 4, L = x arecaled 2-3-4 trees
« Nodescan have 2, 3, or 4 keys

Why would we ever use these?

To Do

» Work on Project #2

* Finish reading Chapter 4
 Start reading Chapter 5

36

