CSE 326: Data Structures

Topic #7:
Don't Sweat It, Splay It!

Ashish Sabharwal
Autumn, 2003

AVL Trees Revisited

» Balance condition:
For every nodex, -1<balance(x) <1
— Strong enough : Worst case depth is ®(log n)
— Easy to maintain : one single or double rotation

* Guaranteed ®(log n) running time for
— Find?
— Insert ?
— Delete ?
— buildTree ?

Today’ s Outline

« TODO
— Finish Homework #1;
due Friday at the beginning of class
— Find a partner for Project #2;
send me email by Friday evening

¢ Review AVL Trees
e Splay Trees

AVL Trees Revisited

¢ What extrainfo did we maintain in each node?

* Where were rotations performed?

¢ How did we locate this node?

Other Possibilities?

« Could use different balance conditions, different ways to
maintain balance, different guarantees on running time, ...

* Why?Aren't AVL trees perfect?

« Many other balanced BST data structures
— Red-Black trees
— AAtrees
— Splay Trees
— 2-3Trees
— B-Trees

Splay Trees

 Blind adjusting version of AVL trees

— Why worry about balances? Just rotate anyway!
* Amortized time per operationsis O(log n)
* Worst case time per operation is O(n)

— But guaranteed to happen rarely

Insert/Find alwaysrotate node to the root!

Subject GRE Analogy question:
AVL isto Splay trees as isto

Recall: Amortized Complexity

If a sequence of M operationstakes O(M f(n)) time,
we say the amortized runtimeis O(f(n)).

« Worst case time per operation can till be large, say O(n)
« Worst case time for any sequence of M operationsis O(M f(n))

Average time per operation for any sequence is O(f(n))

Amortized complexity is worst-case guarantee over
sequences of operations.

Recall: Amortized Complexity

¢ |samortized guarantee any weaker than worstcase?
 |samortized guarantee any stronger than averagecase?
 |saverage case guarantee good enough in practice?

 |samortized guarantee good enough in practice?

The Splay Tree Idea

6

If you' re forced to make |
areally deep access:

' Since you' re down there anyway,
fix up alot of deep nodes!

Find/Insert in Splay Trees

1. Find or insert anode k
2. Splay k totheroot using:
Zig-zag, Zig-zig, or plain old zig rotation

Why could this be good??

1. Helpsthe new root, k
0 Great if x isaccessed again

2. And helps many others!
o Great if many others on the path are accessed

10

Splaying node k to the root:
Need to be careful!

One option is to repeatedly use AVL single rotation
until k becomes the root: (see Section 4.5.1 for details)

Splaying node k to the root:
Need to be careful!

What’s bad about this process?

lay: Zig-Zag"
~ Splay 9{9

0 = o
XN /Y\/Z

pa

*Just like an... Which nodes improve depth?

13

Splay: Zig-Zig"

*|sthisan AVL zig-zig? How to implement?

Why does this help?

Specia Casefor Root: Zig

root Q — root
/2\ [i 2

/N /2N

Relative depth of p, Y, Z? Relative depth of everyone else?

Why not drop zig-zig and just zig al the way?

Does Splaying Help Every Node?

Only amortized guarantee!

Let's see an example...

Splaying Example: Find(6)

Lo

Find(6) \

® ©,

@/

Still Splaying 6

©

Findly...

Another Splay: Find(4)

@ @
\ 2 \

\ 1 \

Find(4) P \ \ - P \ \
6 6 ®
4 Iy

®
@
?
— 3
®p
@
Example Splayed Out

But Wait...

What happened here?

Didn’t two find operations take linear time
instead of logarithmic?

What about the amortized ®(log n) guarantee?

Why Splaying Helps

« If anode n on the access path is at depth d before
the splay, it’s at about depth d/2 after the splay

— Exceptions are the root, the child of the root (and
descendants), and the node splayed

¢ Overall, nodes which are low on the access path
tend to move closer to the root

Practical Benefit of Splaying

* No heights to maintain, no imbalance to check for
— Less storage per node, easier to code

« Often data that is accessed once,
is soon accessed again!
— Splaying doesimplicit caching by bringing it to the root

Splay Operations: Find
¢ Find the nodein normal BST manner

« Splay the node to the root
— if node not found, splay what would have been its parent

What if wedidn’t splay?

Splay Operations: Insert

¢ Insert the node in normal BST manner
« Splay the node to the root

What if wedidn’t splay?

Splay Operations: Remove

®
find(k) del k
=) A

Now what?

Join

Join(L, R): given two trees such that L < R, merge them

| L
AL = K /2
max
Splay on the maximum element in L, then attach R

Does thiswork to join any two trees?

Delete Example

Delete(4)

®
0 © find(d) (2 ©

Find max

© ©
0 0 29

A Nifty Splay Operation:
Splitting

Split(T, k) createstwo BSTsL and R:
— al elementsof Tareineither LorR (T = L O R)
— al elementsinL are< k
— al elementsinRare= k
— LandRsharenoeements(L n R = 0O)

How do we split a splay tree?

Splitting Splays
Q

split(K)

[T AN

void split(Node * root, Node *& left,

Node *& right, Gbject k) {

Node * target = root->find(k);
splay(target);
it (target < k) { OR

left = target->left;

target->left = NULL;

right = target; L R L R
}
<X >X <X 2 X

31

Aha, Another Way to Insert!

Insert(k)
®

S\NE=AL= LN

void insert(Node *& root, Object k) {
Node * left, * right;
split(root, left, right, k);
root = new Node(k, left, right); |nterestingnote split-and-insert was
} the original algorithm. But insert-
and-splay has better cop&tants

Splay Tree Summary

« All operations arein amortized ®(log n) time

« Splaying can be done top-down; better because:
— only one pass
— NO recursion or parent pointers necessary
— we didn’'t cover top-down in class

« Splay trees are very effective search trees
— Relatively smple
— No extrafields required
— Excellent locality properties: frequently accessed keys are
cheap to find 3

To Do
« Finish reading Chapter 4
* Homework #1 due Friday

« Project #2 will be released Friday
— Pick a partner!

