CSE 326: Data Structures

Topic #5:
Skew Heaps and Binomial Qs

Ashish Sabharwal
Autumn, 2003

Today’ s Outline

¢ Binary Heaps: average runtime of insert
« Leftist Heaps: re-do proof of property #1

« Amortized Runtime
« Skew Heaps

« Binomial Queues

¢ Comparing Implementations of Priority Qs

Binary Heaps:
Average runtime of Insert

Recall: Insert-in-Binary-Heap(x) {
Put x in the next available position
percolateUp(last node)
}

How long does this percolateUp(last node) take?
— Worst case: ©(tree height), i.e. ®(log n)
— Averagecase: ©(1) Why??

Averageruntime of insert in binary heap = @(1) 3

Right Path in aLeftist Treeis Short (#1)

Claim: Theright path is as short as any in the tree.
Proof: (By contradiction)

A Twist in Complexity Analysis:
The Amortized Case

If a sequence of M operationstakes O(M f(n)) time,
we say the amortized runtime is O(f(n)).

» Worst case time per operation can still be large, say O(n)
» Worst case time for any sequence of M operationsis O(M f(n))

» Average time per operation for any sequenceis O(f(n))

Isthisthe same as average time?

Pick ashorter path: D, <D, C)\
Say it diverges from right path at x °
npl(L) < D;-1 because of the path of

length D,-1 to null G Q

Dl e .
° 2

npl(R) = D,-1 because every node on . °

right path is leftist O o

Leftist property at x violated! Q
Skew Heaps

Problems with Ieftist heaps
— extrastorage for npl
— extracomplexity/logic to maintain and check npl
— two pass iterative merge (requires stack!)
— right side is“often” heavy and requires a switch

Solution: skew heaps
— blind adjusting version of leftist heaps
— merge always switches children when fixing right path
— iterative method has only one pass
— amortized time for merge, insert, and deleteMin is ®(log n)
— however, worst case time for all threeis ®(n) 6

Merging Two Skew Heaps

VANV VAN

Only one step per iteration, with children always switched ,

Skew Heap Code

voi d nerge(heapl, heap2) {
case {

heapl == NULL: return heap2;

heap2 == NULL: return heapl;

heapl.findM n() < heap2.findMn():
tenp = heapl.right;
heapl.right = heapl.left;
heapl.left = nmerge(heap2, tenp);
return heapl;

ot her wi se:
return nerge(heap2, heapl);

Runtime Analysis:
Worst-case and Amortized

* No worst case guarantee on right path length!
« All operations rely on merge

= worst case complexity of al ops =

« Will do amortized analysis later in the course
(see chapter 11 if curious)

¢ Result: M mergestaketime M log n

= amortized complexity of al ops=

}
ATaB: Comparing Heaps
« Binary Heaps o Leftist Heaps
+ d-Heaps * Skew Heaps

Still scope for improvement! n

Y et Another Data Structure:
Binomial Queues

 Structural property

— Forest of binomial trees with at most
one tree of any height

What's a forest?

What'sabinomial tree?

¢ Order property
— Each binomial tree has the heap-order property

My opinion: Beautiful and elegant!

The Binomial Tree, By,

* B, hasheight h and exactly 2" nodes

« B, isformed by making B,,.; achild of another By, ;

¢ Root has exactly h children

* Number of nodes at depth d is binomial coeff. 2]
— Hence the name; we will not use thislast property

0 Blc% BZ%% 83%

Bo

Binomia Q with n elements

Binomial Q with n elements has a unique structural
representation in terms of binomial trees!

Writeninbinary: n=1101 .05 = 13 pae 109)

1B, 1B, No B, 1B,

O

Properties of Binomial Q

* At most one binomial tree of any height

e nnodes = binary representation is of size ?
= deepest tree has height ?

= number of treesis ?

Define: height(forest F) = maX,ee1inr { height(T) }

Binomial Q with n nodes has height ®(log n)

15

Operations on Binomial Q

« Will again define merge as the base operation
— insert, deleteMin, buildBinomial Q will use merge

« Canwedo increaseKey efficiently?
decreaseKey?

¢ What about findMin?

Merging Two Binomial Qs
Essentially like adding two binary numbers!

1. Combinethetwo forests
2. For kfrom 1 to maxheight {

a m ~ tota number of B,’sinthetwo BQs #0of I's

b. if m=0: continue; 0+0=0

c. ifm=l: continug; 1+0=1

d. if m=2: combinethetwo B/'stoformaB,,, — 1+1=1+c

e ifm=3: retanoneB,and ——— - 1+1+c=1+C

combine the other two to form a By,

Claim: When this process ends, the forest

has at most onetree of any height w

Complexity of Merge

Constant time for each height
Max height islog n

= worst caserunning time = O()

Insert inaBinomia Q

Insert(x): Similar to leftist or skew heap

runtime

Worst case complexity: same as merge
o()

Average case complexity: 0(1)
Why?? Hint: Think of adding 1 to 1101

19

deleteMinin Binomial Q

deleteMin: Similar to leftist and skew heaps
A tiny bit more complicated

deleteMin: Example

BQ
’ % %
find and delete
smallest root
merge without

®

21

the shaded part
BQ' @%

deleteMin: Example
Result:

runtime:

buildBinomialQ

Call insert n times on an initially empty BQ

runtime: naive O(nlogn)
careful analysis ©(n)

idea: count the number of times
one needs to combine trees

23

To Do

« Project #1 due tonight!
— Bring printout to section tomorrow

¢ Written homework #1
— will be out later today; 1I'll send an email

* Revise binary search tree basics
« Begin reading chapter 4 in the book

