CSE 326: Data Structures

Topic 3: Priority Queues and
Binary Heaps

Ashish Sabharwal
Autumn, 2003

Today’ s Outline

¢ Questions on Sound Blaster? (check updates!)
¢ Finish Asymptotic Analysis
» Trees Review

e Priority Queues
¢ (Binary) Heaps

Simplifying Recurrences
Given arecursive equation for the running time,
can sometimes simplify it for analysis.

For an upper-bound analysis, can optionally simplify to
something larger, e.g.

T(n) = T(floor(W2) +1 to T)<T(2)+1

For alower-bound analysis, can optionally simplify to
something smaller, e.g.

T()=2T(n2+5+1 to TM)>2T(2)+1

* d-Heaps
The One Page Cheat Sheet
¢ Calculating series: « Solving recurrences:
eg . _h(n+)) eg. T(N)=T(M2)+1
2=

1. Brute force (Section 1.2.3) 1. Expansion (examplein class)
2. Induction (Section 1.2.5) 2. Induction (Section 1.2.5, dides)
3. Memorize simple ones! 3. Telescoping (later...)

« General proofs (Section 1.2.5)
e.g. How many edgesin a tree with n nodes?
1. Counterexample
2. Induction
3. Contradiction 4

Tree Review
TreeT
root(T):
leaves(T): @ G
children(B):
parent(H): @G @
siblings(E):

descendents(G):
subtre(C): OEOOW®

5

More Tree Terminology

Tree T
depth(T):
height(G): (B® ©
degree(B): @ e G @

branching factor(T): m@
OEOOMM

6

Some More Tree Terminology

Tishinaryif ... @) TreeT
©
Tisn-aryif ... ®

T iscompleteif ...

How deep isa complete tree with n nodes?

Back to Queues

« Some applications
— ordering CPU jobs
— simulating events
— picking the next search site

¢ Problems?
— short jobs should go first
— earliest (smulated time) events should go first
— most promising sites should be sear ched first

A New ADT!

Let's create anew ADT to solve this problem!

) F(7) E(5)
G(9) "= D(100) A(4)
B(6)

deleteMin

C(3)

What do we need to define this ADT?

Priority Queue ADT

1. PQueuedata: collection of datawith priority
. Note: Often repr
2. PQueue operations asoogllgctf?gn(? pﬁ?t‘iad&g
— Create with dataimplicit
— destroy
— insert
— deleteMin
— is_empty

3. PQueue property: for two elements in the queue,
x andy, if x hasalower priority valuethany, x
will be deleted beforey 10

Applications of the Priority Q

« Hold jobsfor aprinter in order of length

« Store packets on network routersin order of urgency
¢ Simulate events with explicit priorities

¢ Select most frequent symbols for compression

¢ Sort numbers, picking minimum first

* Anything greedy

1

Naive Priority Q Data Structures

¢ Unsorted array:
— insert:
— deleteMin:

« Sorted array:

— insert:
— deleteMin:

Of thetwo, which islikely to be better ?

Another Priority Q Data Structure:
Binary Search Tree

Average performance
insert:

deleteMin:
Problems

1

2.

Nifty Storage Trick: Array

¢ Index calculations:
— child:

— parent:
— root:

— next free:

0O 1 2 3 4 5 6 7 8 9 10 11 12
‘12‘2‘4‘5‘7‘6‘10‘8‘11‘9‘12‘14‘20‘ ‘
15

Percolate Down — Basic
D)

A Better Priority Q Data Structure:
Binary Heap

1. Heap-order property
— parent’skey islessthan
children’skeys
— result: minimum is always
at thetop
2. Structure property
— complete tree with fringe
nodes packed to the left
— result: depthis always
©(log n); next open
location always known

How do we find the minimum? 4

DeeteMin

pqueue. del et eM n()

DeleteMin Code (Optimized)

Obj ect deleteMn() { int percol ateDown(int hole,
assert (!isEnpty()); . Qj ect val) {
returnval = Heap[1]; while (2*hole <= size) {

. left = 2*hol e;
si ze--;

right = left + 1;
newPos = if (right < size &&
per col at eDown(1, Heap[right] < Heap[left])
Heap[si ze+1]); target = right;
Heap[newPos] = el se
N target = left;
Heap[si ze + 1];
return returnval; if (Heap[target] < val) {
} Heap[hol e] = Heap[target];
hole = target;
}
. el se
runtime: br eak;
return hol e; 19

}

Insert

pqueue. i nsert(3)

@

Percolate Up

voi d insert(Chject o) { int percolateUp(int hole,
assert(!isFull());) bj ect val) {
Si ze++: while (hole > 1 &&
" val < Heap[hole/2])
newPos = Heap[hol e] = Heap[hol e/ 2] ;
per col at eUp(si ze, 0); hole /= 2;
Heap[newPos] = o;
} return hole;
}
runtime:

Other Priority Queue Operations

¢ decreaseKey

— given apointer to an object in the queue, reduce its priority value

Solution: change priority and
¢ increaseKey

— given apointer to an object in the queug, increase its priority value

Solution: change priority and

Why do we need a pointer? Why not simply data value?

23

More Priority Queue Operations

* remove
— given apointer to an object in the queue, remove it

Solution: set priority to negative infinity, percolate up to
root and deleteMin

¢ buildHeap
Naive solution:

Running time:

Can we do better ?

BuildHeap: Floyd's Method

‘12‘5‘11‘3‘10‘6‘9‘4‘8‘1‘7‘2‘

Add elements arbitrarily to form a complete tree.
Pretend it’'s a heap and fix the heap-order property!)

25

BquHeap Floyd’ sMethod

® @ © o
OO
@ e

runtime:

27

Facts about Heaps

Observations

« finding a child/parent index is a multiply/divide by two
« operations jump widely through the heap

« each percolate step looks a only two new nodes
 insertsare at least as common as deleteMins

Redlities

« divison/multiplication by powers of two are equally fast
« looking at only two new pieces of data: bad for cache!

« with huge data sets, disk accesses dominate

A Solution: d-Heaps

Each node has d children
Still representable by array

Good choices for d:

" Groxaponerowolr - H OOV VO

~ it one.set of childrenina - 11317214 85121110 6|9
— fit one et of childrenon a

memory page/disk block
— optimize performance based

on # of inserts/removes

29

Operations on d-Heap

¢ |nsert . runtime=
e deleteMin: runtime=

Does this help insert or deleteMin more?
Isthis good or bad?

One More Operation

¢ Merge two heaps. Ideas?

Can doin ®(log n) worst case time.
Next lecture!

31

¢ Assignments
* Reading
e Admin

To Do

Project 1 — check updates!
Chapter 6
Sign up for class email list

