Winter Quater 002

Beauty is Only ©(log n) Deep

» Binary Search Trees are fast if they’ re shallow
e.g.. complete
» Problems occur when one branch is much longer
than the other
How to capture the notion of a “ sort of” complete tree?

Balance

» Balance
= height(left subtree) - height(right subtree)
= zero everywhere = perfectly balanced
= small everywhere = balanced enough

Balance between -1 and 1 everywhere =
maximum height of 1.44 log n

AVL Tree
Dictionary Data Structure

» Binary search tree
properties
» Balance property

balance = height of left
chlld height of right child

= NULL child has height -1
= balance of every nodeis:
-lsbs1
= result:
« depthis®(1 og n)

AnAVL Tree

data
height
children

Not An AVL Tree

data
height
children




Bad Case #1

Insert(small)
Insert(middle) 2
Insert(tall)

Single Rotation

/

0

—) 0

Basic operation used in AVL trees:

A right child could legally have its parent as its left
child.

General Case: Insert Unbalances

h+1

General Single Rotation

» Height of root same asit was before insert!
» We can stop here!

Bad Case #2

Insert(small)
Insert(tall) 2
Insert(middle)

Will asinglerotation
(bringing T up to the top)
fix this?

Double Rotation

_@\5_ |




General Double Rotation

h+3

> Initially: insert into X unbalances tree (root height goesto h+3)
> “Zig zag” to pull up c —restoresroot height to h+2, left subtree height to h

Another Double Rotation Case

> Initially: insert into Y unbalances tree (root height goesto h+2)
> “Zig zag” to pull up c —restoresroot height to h+1, left subtree height to h

Insert Algorithm

» Find spot for value
» Hang new node
» Search back up looking for imbalance
> If thereis an imbalance:
'\“ outside”: Perform single rotation and exit

'? “ingde’: Perform double rotation and exit

AVL Insert Algorithm

AVL Insert Algorithm

voi d insert(Conparable x, Node * & root){
if ( root == NULL )
root = new Node(Xx);
else if (x < root->key){
insert( x, root->left );

if (root unbalanced) { rotate... } }
el se

insert( x, root->right ); }

if (root unbalanced) { rotate... } }

root - >hei ght = max(root->left->height,
root - >ri ght->hei ght) +1;

AVL

> Automatically Virtually Leveled

> Architecture for inVisible Leveling
> Articulating Various Lines

» Amortizing? Very Lousy!

» Amazingly Vexing Letters

Adelson-Velskii Landis




Pros and Cons of AVL Trees

Arguments for AVL trees:

1. SearchisO(log N) since AVL trees are always balanced.

2. Theheight balancing adds no more than a constant factor to
the speed of insertion.

Arguments against using AV L trees:

1. Difficult to program & debug; more space for height info.
2. Asymptotically faster but usually slower in practice!

Coming Up

> Splay trees
» Get going this weekend on Assignment #3!
» Read section 4.5

To hand in on Monday: One paragraph, in your own

1
2.
3.

words:

How (roughly) do Splay Trees work?
What are their advantages?

What kind of datawould give the very best
performance for a Splay tree?




