
1

CSE 326: Data Structures
Lecture #8

Balancing Act and
What AVL Stands For

Henry Kautz

Winter Quarter 2002

Beauty is Only Θ(log n) Deep
�

Binary Search Trees are fast if they’ re shallow
e.g.: complete

�
Problems occur when one branch is much longer
than the other
How to capture the notion of a “ sort of” complete tree?

Balance

�
Balance

� height(left subtree) - height(right subtree)
� zero everywhere � perfectly balanced
� small everywhere� balanced enough

t

5
7

Balance between -1 and 1 everywhere�
maximum height of 1.44 log n

AVL Tree
Dictionary Data Structure

4

121062

115

8

14137 9

�
Binary search tree
properties

�
Balance property

� balance = height of left
child – height of right child

� NULL child has height -1
� balance of every node is:

- 1 ≤ ≤ ≤ ≤ b ≤≤≤≤ 1
� result:

• depth is ΘΘΘΘ(l og n)

15

An AVL Tree

15

92 12

5

10

20

17

0

0

100

1 2

3 10

3

data

height

children

30
0

Not An AVL Tree

15

92 12

5

10

20

17

0

1

200

1 3

4 10

4

data

height

children

30
0

18
0

2

Bad Case #1

Insert(small)

Insert(middle)

Insert(tall)

T

M

S

0

1

2

Single Rotation

T

M

S

0

1

2

M

S T
00

1

Basic operation used in AVL trees:

A right child could legally have its parent as its left
child.

General Case: Insert Unbalances
a

X

Y

b

Z

h h - 1

h + 1 h - 1

h + 2
a

X

Y

b

Z

h-1 h - 1

h h - 1

h + 1

General Single Rotation

�
Height of root same as it was before insert!

�
We can stop here!

a

X

Y

b

Z

a

XY

b

Zh h - 1

h + 1 h - 1

h + 2

h

h - 1

h

h - 1

h + 1

Bad Case #2

Insert(small)

Insert(tall)

Insert(middle)

M

T

S

0

1

2

Will a single rotation
(bringing T up to the top)
fix this?

Double Rotation

M

S T
00

1

M

T

S

0

1

2

T

M

S

0

1

2

3

General Double Rotation

�
Initially: insert into X unbalances tree (root height goes to h+3)

�
“Zig zag” to pull up c – restores root height to h+2, left subtree height to h

a

Z

b

W

c

Y

a

Z

b

W

c

Y

h+1

h

h

h

h + 3

h + 2

hh

h+1

h + 2

h+1

h

X
X

Another Double Rotation Case

�
Initially: insert into Y unbalances tree (root height goes to h+2)

�
“Zig zag” to pull up c – restores root height to h+1, left subtree height to h

a

Z

b

W

c

Y

a

Z

b

W

c

Y

h+1

h

h

h

h + 3

h + 2

hh

h+1

h + 2

h+1

h

X X

Insert Algorithm
�

Find spot for value
�

Hang new node
�

Search back up looking for imbalance
�

If there is an imbalance:
“outside” : Perform single rotation and exit

“ inside” : Perform double rotation and exit

AVL Insert Algorithm

AVL Insert Algorithm
voi d i nser t (Compar abl e x, Node * & r oot) {

i f (r oot == NULL)

r oot = new Node(x) ;

el se i f (x < r oot - >key) {

i nser t (x, r oot - >l ef t) ;

i f (r oot unbal anced) { r ot at e. . . } }

el se

i nser t (x, r oot - >r i ght) ; }

i f (r oot unbal anced) { r ot at e. . . } }

r oot - >hei ght = max(r oot - >l ef t - >hei ght ,

r oot - >r i ght - >hei ght) +1;

}

AVL
�

Automatically Virtually Leveled
�

Architecture for inVisible Leveling
�

Articulating Various Lines
�

Amortizing? Very Lousy!
�

Amazingly Vexing Letters

Adelson-Velskii Landis

4

Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. The height balancing adds no more than a constant factor to

the speed of insertion.

Arguments against using AVL trees:

1. Difficult to program & debug; more space for height info.
2. Asymptotically faster but usually slower in practice!

Pros and Cons of AVL Trees Coming Up
�

Splay trees
�

Get going this weekend on Assignment #3!
�

Read section 4.5
To hand in on Monday: One paragraph, in your own

words:

1. How (roughly) do Splay Trees work?

2. What are their advantages?

3. What kind of data would give the very best
performance for a Splay tree?

